Alex R DeCasien, Kenneth L Chiou, Camille Testard, Arianne Mercer, Josué E Negrón-Del Valle, Samuel E Bauman Surratt, Olga González, Michala K Stock, Angelina V Ruiz-Lambides, Melween I Martínez, Susan C Antón, Christopher S Walker, Jérôme Sallet, Melissa A Wilson, Lauren J N Brent, Michael J Montague, Chet C Sherwood, Michael L Platt, James P Higham, Noah Snyder-Mackler
{"title":"灵长类动物大脑转录组性别差异对进化和生物医学的影响。","authors":"Alex R DeCasien, Kenneth L Chiou, Camille Testard, Arianne Mercer, Josué E Negrón-Del Valle, Samuel E Bauman Surratt, Olga González, Michala K Stock, Angelina V Ruiz-Lambides, Melween I Martínez, Susan C Antón, Christopher S Walker, Jérôme Sallet, Melissa A Wilson, Lauren J N Brent, Michael J Montague, Chet C Sherwood, Michael L Platt, James P Higham, Noah Snyder-Mackler","doi":"10.1016/j.xgen.2024.100589","DOIUrl":null,"url":null,"abstract":"<p><p>Humans exhibit sex differences in the prevalence of many neurodevelopmental disorders and neurodegenerative diseases. Here, we generated one of the largest multi-brain-region bulk transcriptional datasets for the rhesus macaque and characterized sex-biased gene expression patterns to investigate the translatability of this species for sex-biased neurological conditions. We identify patterns similar to those in humans, which are associated with overlapping regulatory mechanisms, biological processes, and genes implicated in sex-biased human disorders, including autism. We also show that sex-biased genes exhibit greater genetic variance for expression and more tissue-specific expression patterns, which may facilitate rapid evolution of sex-biased genes. Our findings provide insights into the biological mechanisms underlying sex-biased disease and support the rhesus macaque model for the translational study of these conditions.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100589"},"PeriodicalIF":11.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293591/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolutionary and biomedical implications of sex differences in the primate brain transcriptome.\",\"authors\":\"Alex R DeCasien, Kenneth L Chiou, Camille Testard, Arianne Mercer, Josué E Negrón-Del Valle, Samuel E Bauman Surratt, Olga González, Michala K Stock, Angelina V Ruiz-Lambides, Melween I Martínez, Susan C Antón, Christopher S Walker, Jérôme Sallet, Melissa A Wilson, Lauren J N Brent, Michael J Montague, Chet C Sherwood, Michael L Platt, James P Higham, Noah Snyder-Mackler\",\"doi\":\"10.1016/j.xgen.2024.100589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Humans exhibit sex differences in the prevalence of many neurodevelopmental disorders and neurodegenerative diseases. Here, we generated one of the largest multi-brain-region bulk transcriptional datasets for the rhesus macaque and characterized sex-biased gene expression patterns to investigate the translatability of this species for sex-biased neurological conditions. We identify patterns similar to those in humans, which are associated with overlapping regulatory mechanisms, biological processes, and genes implicated in sex-biased human disorders, including autism. We also show that sex-biased genes exhibit greater genetic variance for expression and more tissue-specific expression patterns, which may facilitate rapid evolution of sex-biased genes. Our findings provide insights into the biological mechanisms underlying sex-biased disease and support the rhesus macaque model for the translational study of these conditions.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100589\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293591/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Evolutionary and biomedical implications of sex differences in the primate brain transcriptome.
Humans exhibit sex differences in the prevalence of many neurodevelopmental disorders and neurodegenerative diseases. Here, we generated one of the largest multi-brain-region bulk transcriptional datasets for the rhesus macaque and characterized sex-biased gene expression patterns to investigate the translatability of this species for sex-biased neurological conditions. We identify patterns similar to those in humans, which are associated with overlapping regulatory mechanisms, biological processes, and genes implicated in sex-biased human disorders, including autism. We also show that sex-biased genes exhibit greater genetic variance for expression and more tissue-specific expression patterns, which may facilitate rapid evolution of sex-biased genes. Our findings provide insights into the biological mechanisms underlying sex-biased disease and support the rhesus macaque model for the translational study of these conditions.