{"title":"重力波作为平流层突然变暖期间对流层-平流层-大气层耦合的一种机制","authors":"Gordana Jovanovic","doi":"10.5194/egusphere-2024-1856","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The propagation of gravity waves (GW) and their role in the coupling of the troposphere–stratosphere–mesosphere atmospheric layers during sudden stratospheric warming (SSW) are studied. A standard set of hydrodynamic equations (HD) is used to derive the analytical dispersion equations and the GWs reflection coefficient. These equations are applied to the troposphere–stratosphere and stratosphere–mesosphere boundaries to analyze which part of the GWs spectra has the greatest chance of crossing them and affecting the dynamics of the upper atmosphere. We found that the GWreflection coefficient at the troposphere–stratosphere boundary increases significantly during SSW. This is not the case for the reflection coefficient at the stratosphere–mesosphere boundary when the reflection coefficient decreases compared to its value in the no–SSW case. The generation of GWs in the stratosphere during the SSW is responsible for the reduction of the reflection coefficient. However, these additional GW fluxes are not sufficient to compensate for the reduction of GW fluxes coming from the troposphere to the mesosphere. As a result, there is mesospheric cooling accompanied by SSW events.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"73 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravity waves as a mechanism of troposphere–stratosphere–mesosphere coupling during sudden stratospheric warming\",\"authors\":\"Gordana Jovanovic\",\"doi\":\"10.5194/egusphere-2024-1856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The propagation of gravity waves (GW) and their role in the coupling of the troposphere–stratosphere–mesosphere atmospheric layers during sudden stratospheric warming (SSW) are studied. A standard set of hydrodynamic equations (HD) is used to derive the analytical dispersion equations and the GWs reflection coefficient. These equations are applied to the troposphere–stratosphere and stratosphere–mesosphere boundaries to analyze which part of the GWs spectra has the greatest chance of crossing them and affecting the dynamics of the upper atmosphere. We found that the GWreflection coefficient at the troposphere–stratosphere boundary increases significantly during SSW. This is not the case for the reflection coefficient at the stratosphere–mesosphere boundary when the reflection coefficient decreases compared to its value in the no–SSW case. The generation of GWs in the stratosphere during the SSW is responsible for the reduction of the reflection coefficient. However, these additional GW fluxes are not sufficient to compensate for the reduction of GW fluxes coming from the troposphere to the mesosphere. As a result, there is mesospheric cooling accompanied by SSW events.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1856\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1856","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Gravity waves as a mechanism of troposphere–stratosphere–mesosphere coupling during sudden stratospheric warming
Abstract. The propagation of gravity waves (GW) and their role in the coupling of the troposphere–stratosphere–mesosphere atmospheric layers during sudden stratospheric warming (SSW) are studied. A standard set of hydrodynamic equations (HD) is used to derive the analytical dispersion equations and the GWs reflection coefficient. These equations are applied to the troposphere–stratosphere and stratosphere–mesosphere boundaries to analyze which part of the GWs spectra has the greatest chance of crossing them and affecting the dynamics of the upper atmosphere. We found that the GWreflection coefficient at the troposphere–stratosphere boundary increases significantly during SSW. This is not the case for the reflection coefficient at the stratosphere–mesosphere boundary when the reflection coefficient decreases compared to its value in the no–SSW case. The generation of GWs in the stratosphere during the SSW is responsible for the reduction of the reflection coefficient. However, these additional GW fluxes are not sufficient to compensate for the reduction of GW fluxes coming from the troposphere to the mesosphere. As a result, there is mesospheric cooling accompanied by SSW events.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.