重力波作为平流层突然变暖期间对流层-平流层-大气层耦合的一种机制

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-07-01 DOI:10.5194/egusphere-2024-1856
Gordana Jovanovic
{"title":"重力波作为平流层突然变暖期间对流层-平流层-大气层耦合的一种机制","authors":"Gordana Jovanovic","doi":"10.5194/egusphere-2024-1856","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The propagation of gravity waves (GW) and their role in the coupling of the troposphere–stratosphere–mesosphere atmospheric layers during sudden stratospheric warming (SSW) are studied. A standard set of hydrodynamic equations (HD) is used to derive the analytical dispersion equations and the GWs reflection coefficient. These equations are applied to the troposphere–stratosphere and stratosphere–mesosphere boundaries to analyze which part of the GWs spectra has the greatest chance of crossing them and affecting the dynamics of the upper atmosphere. We found that the GWreflection coefficient at the troposphere–stratosphere boundary increases significantly during SSW. This is not the case for the reflection coefficient at the stratosphere–mesosphere boundary when the reflection coefficient decreases compared to its value in the no–SSW case. The generation of GWs in the stratosphere during the SSW is responsible for the reduction of the reflection coefficient. However, these additional GW fluxes are not sufficient to compensate for the reduction of GW fluxes coming from the troposphere to the mesosphere. As a result, there is mesospheric cooling accompanied by SSW events.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravity waves as a mechanism of troposphere–stratosphere–mesosphere coupling during sudden stratospheric warming\",\"authors\":\"Gordana Jovanovic\",\"doi\":\"10.5194/egusphere-2024-1856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The propagation of gravity waves (GW) and their role in the coupling of the troposphere–stratosphere–mesosphere atmospheric layers during sudden stratospheric warming (SSW) are studied. A standard set of hydrodynamic equations (HD) is used to derive the analytical dispersion equations and the GWs reflection coefficient. These equations are applied to the troposphere–stratosphere and stratosphere–mesosphere boundaries to analyze which part of the GWs spectra has the greatest chance of crossing them and affecting the dynamics of the upper atmosphere. We found that the GWreflection coefficient at the troposphere–stratosphere boundary increases significantly during SSW. This is not the case for the reflection coefficient at the stratosphere–mesosphere boundary when the reflection coefficient decreases compared to its value in the no–SSW case. The generation of GWs in the stratosphere during the SSW is responsible for the reduction of the reflection coefficient. However, these additional GW fluxes are not sufficient to compensate for the reduction of GW fluxes coming from the troposphere to the mesosphere. As a result, there is mesospheric cooling accompanied by SSW events.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1856\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1856","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要。研究了平流层突然变暖(SSW)期间重力波(GW)的传播及其在对流层-平流层-大气层耦合中的作用。使用一套标准的流体力学方程(HD)推导出了分析分散方程和重力波反射系数。将这些方程应用于对流层-平流层和平流层-大气层边界,以分析 GWs 光谱的哪一部分最有可能穿过这些边界并影响高层大气的动力学。我们发现,在 SSW 期间,对流层-平流层边界的 GW 反射系数显著增加。而平流层-大气层边界的反射系数则不同,与无 SSW 情况下的反射系数相比,平流层-大气层边界的反射系数有所下降。在 SSW 期间,平流层中产生的全球升温潜能值是反射系数降低的原因。然而,这些额外的 GW 通量不足以补偿从对流层到中间层的 GW 通量的减少。因此,伴随着 SSW 事件,中间层出现冷却。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gravity waves as a mechanism of troposphere–stratosphere–mesosphere coupling during sudden stratospheric warming
Abstract. The propagation of gravity waves (GW) and their role in the coupling of the troposphere–stratosphere–mesosphere atmospheric layers during sudden stratospheric warming (SSW) are studied. A standard set of hydrodynamic equations (HD) is used to derive the analytical dispersion equations and the GWs reflection coefficient. These equations are applied to the troposphere–stratosphere and stratosphere–mesosphere boundaries to analyze which part of the GWs spectra has the greatest chance of crossing them and affecting the dynamics of the upper atmosphere. We found that the GWreflection coefficient at the troposphere–stratosphere boundary increases significantly during SSW. This is not the case for the reflection coefficient at the stratosphere–mesosphere boundary when the reflection coefficient decreases compared to its value in the no–SSW case. The generation of GWs in the stratosphere during the SSW is responsible for the reduction of the reflection coefficient. However, these additional GW fluxes are not sufficient to compensate for the reduction of GW fluxes coming from the troposphere to the mesosphere. As a result, there is mesospheric cooling accompanied by SSW events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Interannual variations in Siberian carbon uptake and carbon release period Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols Finite domains cause bias in measured and modeled distributions of cloud sizes Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1