青藏高原 15 米深处的冻土温度基线(2010-2019 年)

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-07-01 DOI:10.5194/essd-2024-114
Defu Zou, Lin Zhao, Guojie Hu, Erji Du, Guangyue Liu, Chong Wang, Wangping Li
{"title":"青藏高原 15 米深处的冻土温度基线(2010-2019 年)","authors":"Defu Zou, Lin Zhao, Guojie Hu, Erji Du, Guangyue Liu, Chong Wang, Wangping Li","doi":"10.5194/essd-2024-114","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The ground temperature at a fixed depth is a crucial boundary condition for understanding the properties of deep permafrost. However, the commonly used mean annual ground temperature at the depth of the zero annual amplitude (MAGT<sub>dzaa</sub>) has application limitations due to large spatial heterogeneity in observed depths. In this study, we utilized 231 borehole records of mean annual ground temperature at a depth of 15 meters (MAGT<sub>15m</sub>) from 2010 to 2019 and employed support vector regression (SVR) to predict gridded MAGT<sub>15m</sub> data at a spatial resolution of nearly 1 km across the Qinghai-Tibet Plateau (QTP). SVR predictions demonstrated a R<sup>2</sup> value of 0.48 with a negligible negative overestimation (-0.01 °C). The average MAGT<sub>15m</sub> of the QTP permafrost was -1.85 °C (±1.58 °C), with 90% of values ranging from -5.1 °C to -0.1 °C and 51.2% exceeding -1.5 °C. The freezing degree days (FDD) was the most significant predictor (p&lt;0.001) of MAGT<sub>15m</sub>, followed by thawing degree days (TDD), mean annual precipitation (MAP), and soil bulk density (BD) (p&lt;0.01). Overall, the MAGT<sub>15m</sub> increased from northwest to southeast and decreased with elevation. Lower MAGT<sub>15m</sub> values are prevail in high mountainous areas with steep slopes. The MAGT<sub>15m</sub> was the lowest in the basins of the Amu Darya, Indus, and Tarim rivers (-2.7 to -2.9 °C) and the highest in the Yangtze and Yellow River basins (-0.8 to -0.9 °C). The baseline dataset of MAGT<sub>15m</sub> during 2010–2019 for the QTP permafrost will facilitates simulations of deep permafrost characteristics and provides fundamental data for permafrost model validation and improvement.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permafrost temperature baseline at 15 meters depth in the Qinghai-Tibet Plateau (2010–2019)\",\"authors\":\"Defu Zou, Lin Zhao, Guojie Hu, Erji Du, Guangyue Liu, Chong Wang, Wangping Li\",\"doi\":\"10.5194/essd-2024-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The ground temperature at a fixed depth is a crucial boundary condition for understanding the properties of deep permafrost. However, the commonly used mean annual ground temperature at the depth of the zero annual amplitude (MAGT<sub>dzaa</sub>) has application limitations due to large spatial heterogeneity in observed depths. In this study, we utilized 231 borehole records of mean annual ground temperature at a depth of 15 meters (MAGT<sub>15m</sub>) from 2010 to 2019 and employed support vector regression (SVR) to predict gridded MAGT<sub>15m</sub> data at a spatial resolution of nearly 1 km across the Qinghai-Tibet Plateau (QTP). SVR predictions demonstrated a R<sup>2</sup> value of 0.48 with a negligible negative overestimation (-0.01 °C). The average MAGT<sub>15m</sub> of the QTP permafrost was -1.85 °C (±1.58 °C), with 90% of values ranging from -5.1 °C to -0.1 °C and 51.2% exceeding -1.5 °C. The freezing degree days (FDD) was the most significant predictor (p&lt;0.001) of MAGT<sub>15m</sub>, followed by thawing degree days (TDD), mean annual precipitation (MAP), and soil bulk density (BD) (p&lt;0.01). Overall, the MAGT<sub>15m</sub> increased from northwest to southeast and decreased with elevation. Lower MAGT<sub>15m</sub> values are prevail in high mountainous areas with steep slopes. The MAGT<sub>15m</sub> was the lowest in the basins of the Amu Darya, Indus, and Tarim rivers (-2.7 to -2.9 °C) and the highest in the Yangtze and Yellow River basins (-0.8 to -0.9 °C). The baseline dataset of MAGT<sub>15m</sub> during 2010–2019 for the QTP permafrost will facilitates simulations of deep permafrost characteristics and provides fundamental data for permafrost model validation and improvement.\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2024-114\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-114","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要固定深度的地温是了解深层冻土特性的重要边界条件。然而,由于观测深度存在较大的空间异质性,常用的零年振幅深度年平均地温(MAGTdzaa)在应用上存在局限性。在本研究中,我们利用了 2010 年至 2019 年期间 231 个钻孔记录的 15 米深度年平均地温(MAGT15m),并采用支持向量回归(SVR)预测了青藏高原(QTP)近 1 千米空间分辨率的网格化 MAGT15m 数据。SVR 预测的 R2 值为 0.48,负高估(-0.01 °C)可忽略不计。青藏高原冻土层的平均 MAGT15m 为 -1.85 °C(±1.58 °C),90% 的数值在 -5.1 °C 至 -0.1 °C 之间,51.2% 的数值超过 -1.5 °C。冰冻度日 (FDD) 是预测 MAGT15m 的最显著因子(p<0.001),其次是解冻度日 (TDD)、年平均降水量 (MAP) 和土壤容重 (BD)(p<0.01)。总体而言,MAGT15m 值从西北向东南递增,并随着海拔的升高而降低。高山陡坡地区的 MAGT15m 值普遍较低。阿姆河、印度河和塔里木河流域的 MAGT15m 值最低(-2.7 至 -2.9°C),长江和黄河流域的 MAGT15m 值最高(-0.8 至 -0.9°C)。2010-2019 年期间青藏高原冻土 MAGT15m 基线数据集将有助于模拟深部冻土特征,并为冻土模型验证和改进提供基础数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Permafrost temperature baseline at 15 meters depth in the Qinghai-Tibet Plateau (2010–2019)
Abstract. The ground temperature at a fixed depth is a crucial boundary condition for understanding the properties of deep permafrost. However, the commonly used mean annual ground temperature at the depth of the zero annual amplitude (MAGTdzaa) has application limitations due to large spatial heterogeneity in observed depths. In this study, we utilized 231 borehole records of mean annual ground temperature at a depth of 15 meters (MAGT15m) from 2010 to 2019 and employed support vector regression (SVR) to predict gridded MAGT15m data at a spatial resolution of nearly 1 km across the Qinghai-Tibet Plateau (QTP). SVR predictions demonstrated a R2 value of 0.48 with a negligible negative overestimation (-0.01 °C). The average MAGT15m of the QTP permafrost was -1.85 °C (±1.58 °C), with 90% of values ranging from -5.1 °C to -0.1 °C and 51.2% exceeding -1.5 °C. The freezing degree days (FDD) was the most significant predictor (p<0.001) of MAGT15m, followed by thawing degree days (TDD), mean annual precipitation (MAP), and soil bulk density (BD) (p<0.01). Overall, the MAGT15m increased from northwest to southeast and decreased with elevation. Lower MAGT15m values are prevail in high mountainous areas with steep slopes. The MAGT15m was the lowest in the basins of the Amu Darya, Indus, and Tarim rivers (-2.7 to -2.9 °C) and the highest in the Yangtze and Yellow River basins (-0.8 to -0.9 °C). The baseline dataset of MAGT15m during 2010–2019 for the QTP permafrost will facilitates simulations of deep permafrost characteristics and provides fundamental data for permafrost model validation and improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
Reconstructing long-term (1980–2022) daily ground particulate matter concentrations in India (LongPMInd) Distributions of in situ parameters, dissolved (in)organic carbon, and nutrients in the water column and pore waters of Arctic fjords (western Spitsbergen) during a melting season Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021 Climatological distribution of ocean acidification variables along the North American ocean margins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1