厘米级氧化碲薄膜用于具有宽带响应性和机械柔性的人工光电突触。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-01 DOI:10.1021/acsnano.4c04851
Chung Won Lee, Changhyeon Yoo, Sang Sub Han, Yu-Jin Song, Seung Ju Kim, Jung Han Kim and Yeonwoong Jung*, 
{"title":"厘米级氧化碲薄膜用于具有宽带响应性和机械柔性的人工光电突触。","authors":"Chung Won Lee,&nbsp;Changhyeon Yoo,&nbsp;Sang Sub Han,&nbsp;Yu-Jin Song,&nbsp;Seung Ju Kim,&nbsp;Jung Han Kim and Yeonwoong Jung*,&nbsp;","doi":"10.1021/acsnano.4c04851","DOIUrl":null,"url":null,"abstract":"<p >Prevailing over the bottleneck of von Neumann computing has been significant attention due to the inevitableness of proceeding through enormous data volumes in current digital technologies. Inspired by the human brain’s operational principle, the artificial synapse of neuromorphic computing has been explored as an emerging solution. Especially, the optoelectronic synapse is of growing interest as vision is an essential source of information in which dealing with optical stimuli is vital. Herein, flexible optoelectronic synaptic devices composed of centimeter-scale tellurium dioxide (TeO<sub>2</sub>) films detecting and exhibiting synaptic characteristics to broadband wavelengths are presented. The TeO<sub>2</sub>-based flexible devices demonstrate a comprehensive set of emulating basic optoelectronic synaptic characteristics; i.e., excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), conversion of short-term to long-term memory, and learning/forgetting. Furthermore, they feature linear and symmetric conductance synaptic weight updates at various wavelengths, which are applicable to broadband neuromorphic computations. Based on this large set of synaptic attributes, a variety of applications such as logistic functions or deep learning and image recognition as well as learning simulations are demonstrated. This work proposes a significant milestone of wafer-scale metal oxide semiconductor-based artificial synapses solely utilizing their optoelectronic features and mechanical flexibility, which is attractive toward scaled-up neuromorphic architectures.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centimeter-Scale Tellurium Oxide Films for Artificial Optoelectronic Synapses with Broadband Responsiveness and Mechanical Flexibility\",\"authors\":\"Chung Won Lee,&nbsp;Changhyeon Yoo,&nbsp;Sang Sub Han,&nbsp;Yu-Jin Song,&nbsp;Seung Ju Kim,&nbsp;Jung Han Kim and Yeonwoong Jung*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c04851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Prevailing over the bottleneck of von Neumann computing has been significant attention due to the inevitableness of proceeding through enormous data volumes in current digital technologies. Inspired by the human brain’s operational principle, the artificial synapse of neuromorphic computing has been explored as an emerging solution. Especially, the optoelectronic synapse is of growing interest as vision is an essential source of information in which dealing with optical stimuli is vital. Herein, flexible optoelectronic synaptic devices composed of centimeter-scale tellurium dioxide (TeO<sub>2</sub>) films detecting and exhibiting synaptic characteristics to broadband wavelengths are presented. The TeO<sub>2</sub>-based flexible devices demonstrate a comprehensive set of emulating basic optoelectronic synaptic characteristics; i.e., excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), conversion of short-term to long-term memory, and learning/forgetting. Furthermore, they feature linear and symmetric conductance synaptic weight updates at various wavelengths, which are applicable to broadband neuromorphic computations. Based on this large set of synaptic attributes, a variety of applications such as logistic functions or deep learning and image recognition as well as learning simulations are demonstrated. This work proposes a significant milestone of wafer-scale metal oxide semiconductor-based artificial synapses solely utilizing their optoelectronic features and mechanical flexibility, which is attractive toward scaled-up neuromorphic architectures.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c04851\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c04851","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于目前的数字技术不可避免地需要处理大量数据,因此冯-诺依曼计算的瓶颈问题一直备受关注。受人脑运行原理的启发,神经形态计算的人工突触已被视为一种新兴的解决方案。尤其是光电突触越来越受到关注,因为视觉是处理光刺激至关重要的重要信息来源。本文介绍了由厘米级二氧化碲(TeO2)薄膜组成的柔性光电突触设备,该设备可检测和显示宽带波长的突触特性。基于二氧化钛的柔性器件展示了一整套基本的光电突触特性,即兴奋性突触后电流(EPSC)、成对脉冲促进(PPF)、短期记忆到长期记忆的转换以及学习/遗忘。此外,它们还具有各种波长的线性和对称电导突触权重更新,适用于宽带神经形态计算。基于这一大组突触属性,展示了逻辑函数或深度学习、图像识别以及学习模拟等多种应用。这项工作是基于晶圆级金属氧化物半导体的人工突触的一个重要里程碑,它完全利用了金属氧化物半导体的光电特性和机械灵活性,这对扩展神经形态架构具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Centimeter-Scale Tellurium Oxide Films for Artificial Optoelectronic Synapses with Broadband Responsiveness and Mechanical Flexibility

Prevailing over the bottleneck of von Neumann computing has been significant attention due to the inevitableness of proceeding through enormous data volumes in current digital technologies. Inspired by the human brain’s operational principle, the artificial synapse of neuromorphic computing has been explored as an emerging solution. Especially, the optoelectronic synapse is of growing interest as vision is an essential source of information in which dealing with optical stimuli is vital. Herein, flexible optoelectronic synaptic devices composed of centimeter-scale tellurium dioxide (TeO2) films detecting and exhibiting synaptic characteristics to broadband wavelengths are presented. The TeO2-based flexible devices demonstrate a comprehensive set of emulating basic optoelectronic synaptic characteristics; i.e., excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), conversion of short-term to long-term memory, and learning/forgetting. Furthermore, they feature linear and symmetric conductance synaptic weight updates at various wavelengths, which are applicable to broadband neuromorphic computations. Based on this large set of synaptic attributes, a variety of applications such as logistic functions or deep learning and image recognition as well as learning simulations are demonstrated. This work proposes a significant milestone of wafer-scale metal oxide semiconductor-based artificial synapses solely utilizing their optoelectronic features and mechanical flexibility, which is attractive toward scaled-up neuromorphic architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
A Dual-Function LipoAraN-E5 Coloaded with N4-Myristyloxycarbonyl-1-β-d-arabinofuranosylcytosine (AraN) and a CXCR4 Antagonistic Peptide (E5) for Blocking the Dissemination of Acute Myeloid Leukemia. Deep Learning-Enhanced Paper-Based Vertical Flow Assay for High-Sensitivity Troponin Detection Using Nanoparticle Amplification. Defect-Mediated Formation of Oriented Phase Domains in a Lithium-Ion Insertion Electrode. Facilely Achieving Near-Infrared-II J-Aggregates through Molecular Bending on a Donor-Acceptor Fluorophore for High-Performance Tumor Phototheranostics. Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia: Group VIII-Based Catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1