与中性粒细胞的相互影响促进了脂质体在皮肤上的聚集。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-01 DOI:10.1021/acsnano.4c06638
Tianhao Ding, Yang Wang, Yanchun Meng, Ercan Wu, Qianwen Shao, Shiqi Lin, Yifei Yu, Jun Qian, Qin He, Jian Zhang, Jing Wang, Daniel S Kohane, Changyou Zhan
{"title":"与中性粒细胞的相互影响促进了脂质体在皮肤上的聚集。","authors":"Tianhao Ding, Yang Wang, Yanchun Meng, Ercan Wu, Qianwen Shao, Shiqi Lin, Yifei Yu, Jun Qian, Qin He, Jian Zhang, Jing Wang, Daniel S Kohane, Changyou Zhan","doi":"10.1021/acsnano.4c06638","DOIUrl":null,"url":null,"abstract":"<p><p>Liposomes are versatile drug delivery systems in clinical use for cancer and many other diseases. Unfortunately, PEGylated liposomal doxorubicin (sLip/DOX) exhibits serious dose-limiting cutaneous toxicities, which are closely related to the extravascular accumulation of sLip/DOX in the dermis. No clinical interventions have been proposed for cutaneous toxicities due to the elusive transport pathways. Herein, we showed that the reciprocal interaction between liposomes and neutrophils played pivotal roles in liposome extravasation into the dermis. Neutrophils captured liposomes via the complement receptor 3 (CD11b/CD18) recognizing the fragment of complement component C3 (iC3b) deposited on the liposomal surface. Uptake of liposomes also activated neutrophils to induce CD11b upregulation and enhanced the ability of neutrophils to migrate outside the capillaries. Furthermore, inhibition of complement activation either by CRIg-L-FH (a C3b/iC3b targeted complement inhibitor) or blocking the phosphate negative charge in mPEG-DSPE could significantly reduce liposome uptake by neutrophils and alleviate the cutaneous accumulation of liposomes. These results validated the liposome extravasation pathway mediated by neutrophils and provided potential solutions to the devastating cutaneous toxicities occurring during sLip/DOX treatment.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reciprocal Interaction with Neutrophils Facilitates Cutaneous Accumulation of Liposomes.\",\"authors\":\"Tianhao Ding, Yang Wang, Yanchun Meng, Ercan Wu, Qianwen Shao, Shiqi Lin, Yifei Yu, Jun Qian, Qin He, Jian Zhang, Jing Wang, Daniel S Kohane, Changyou Zhan\",\"doi\":\"10.1021/acsnano.4c06638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liposomes are versatile drug delivery systems in clinical use for cancer and many other diseases. Unfortunately, PEGylated liposomal doxorubicin (sLip/DOX) exhibits serious dose-limiting cutaneous toxicities, which are closely related to the extravascular accumulation of sLip/DOX in the dermis. No clinical interventions have been proposed for cutaneous toxicities due to the elusive transport pathways. Herein, we showed that the reciprocal interaction between liposomes and neutrophils played pivotal roles in liposome extravasation into the dermis. Neutrophils captured liposomes via the complement receptor 3 (CD11b/CD18) recognizing the fragment of complement component C3 (iC3b) deposited on the liposomal surface. Uptake of liposomes also activated neutrophils to induce CD11b upregulation and enhanced the ability of neutrophils to migrate outside the capillaries. Furthermore, inhibition of complement activation either by CRIg-L-FH (a C3b/iC3b targeted complement inhibitor) or blocking the phosphate negative charge in mPEG-DSPE could significantly reduce liposome uptake by neutrophils and alleviate the cutaneous accumulation of liposomes. These results validated the liposome extravasation pathway mediated by neutrophils and provided potential solutions to the devastating cutaneous toxicities occurring during sLip/DOX treatment.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c06638\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c06638","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

脂质体是一种多功能给药系统,在临床上可用于治疗癌症和许多其他疾病。遗憾的是,聚乙二醇脂质体多柔比星(sLip/DOX)表现出严重的剂量限制性皮肤毒性,这与 sLip/DOX 在真皮层的血管外蓄积密切相关。由于转运途径难以捉摸,目前还没有针对皮肤毒性的临床干预措施。在这里,我们发现脂质体和中性粒细胞之间的相互影响在脂质体外渗到真皮层中起着关键作用。中性粒细胞通过补体受体 3(CD11b/CD18)识别脂质体表面沉积的补体成分 C3(iC3b)片段来捕获脂质体。脂质体的吸收还能激活中性粒细胞,诱导 CD11b 上调,并增强中性粒细胞向毛细血管外迁移的能力。此外,通过CRIg-L-FH(一种C3b/iC3b靶向补体抑制剂)或阻断mPEG-DSPE中的磷酸负电荷来抑制补体激活,可显著减少中性粒细胞对脂质体的摄取,并减轻脂质体的皮肤蓄积。这些结果验证了由中性粒细胞介导的脂质体外渗途径,并为解决 sLip/DOX 治疗过程中出现的破坏性皮肤毒性提供了潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reciprocal Interaction with Neutrophils Facilitates Cutaneous Accumulation of Liposomes.

Liposomes are versatile drug delivery systems in clinical use for cancer and many other diseases. Unfortunately, PEGylated liposomal doxorubicin (sLip/DOX) exhibits serious dose-limiting cutaneous toxicities, which are closely related to the extravascular accumulation of sLip/DOX in the dermis. No clinical interventions have been proposed for cutaneous toxicities due to the elusive transport pathways. Herein, we showed that the reciprocal interaction between liposomes and neutrophils played pivotal roles in liposome extravasation into the dermis. Neutrophils captured liposomes via the complement receptor 3 (CD11b/CD18) recognizing the fragment of complement component C3 (iC3b) deposited on the liposomal surface. Uptake of liposomes also activated neutrophils to induce CD11b upregulation and enhanced the ability of neutrophils to migrate outside the capillaries. Furthermore, inhibition of complement activation either by CRIg-L-FH (a C3b/iC3b targeted complement inhibitor) or blocking the phosphate negative charge in mPEG-DSPE could significantly reduce liposome uptake by neutrophils and alleviate the cutaneous accumulation of liposomes. These results validated the liposome extravasation pathway mediated by neutrophils and provided potential solutions to the devastating cutaneous toxicities occurring during sLip/DOX treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
23.81%-Efficiency Flexible Inverted Perovskite Solar Cells with Enhanced Stability and Flexibility via a Lewis Base Passivation. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. Direct Optical Patterning of Metal-Organic Frameworks via Photoacid-Induced Etching. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. Transforming Albumin into a Trojan Horse of Immunotherapy-Resistant Colorectal Cancer with a High Microsatellite Instability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1