胆汁淤积诱导的中性粒细胞表型转化有助于结直肠癌肝转移的免疫逃逸。

IF 9 2区 医学 Q1 CELL BIOLOGY Journal of Biomedical Science Pub Date : 2024-06-29 DOI:10.1186/s12929-024-01052-3
Li Sun, Nanyan Yang, Zhihong Liu, Xiandong Ye, Mengting Cheng, Lingjun Deng, Junhao Zhang, Jingjing Wu, Min Shi, Wangjun Liao
{"title":"胆汁淤积诱导的中性粒细胞表型转化有助于结直肠癌肝转移的免疫逃逸。","authors":"Li Sun, Nanyan Yang, Zhihong Liu, Xiandong Ye, Mengting Cheng, Lingjun Deng, Junhao Zhang, Jingjing Wu, Min Shi, Wangjun Liao","doi":"10.1186/s12929-024-01052-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cholestasis is a common yet severe complication that occurs during the advancement of liver metastasis. However, how cholestasis impacts the development, treatment, and tumor microenvironment (TME) of liver metastasis remains to be elucidated.</p><p><strong>Methods: </strong>Extrahepatic and intrahepatic cholestatic mouse models with liver metastasis were established to detect the differential expression levels of genes, infiltration of immune cells and change in bile acid-associated metabolites by using RNA-Sequencing, flowcytometry, and liquid chromatography and mass spectrometry. Western blot was applied to neutrophils under the stimulation of primary bile acids (BAs) in vitro to study the mechanism of phenotypic alteration. In vitro coculture of BA-treated neutrophils with CD8<sup>+</sup> T cells were performed to study the immune-suppressive effect of phenotypic-altered neutrophils. Clinical samples collected from colorectal cancer patients with liver metastasis and cholestasis were applied to RNA-Seq.</p><p><strong>Results: </strong>Compared to non-cholestatic mice, the progression of liver metastasis of cholestatic mice was significantly accelerated, which was associated with increased neutrophil infiltration and T-cell exclusion. Both neutrophils and T cells expressed higher immunosuppressive markers in the cholestatic mouse model, further indicating that an immunosuppressive tumor microenvironment was induced during cholestasis. Although neutrophils deletion via anti-Ly6G antibody partially hindered liver metastasis progression, it reduced the overall survival of mice. Tauro-β-muricholic acid (Tβ-MCA) and Glycocholic acid (GCA), the two most abundant cholestasis-associated primary BAs, remarkably promoted the expression of Arg1 and iNOS on neutrophils via p38 MAPK signaling pathway. In addition, BAs-pretreated neutrophils significantly suppressed the activation and cytotoxic effects of CD8<sup>+</sup> T cells, indicating that the immunosuppressive phenotype of neutrophils was directly induced by BAs. Importantly, targeting BA anabolism with Obeticholic acid (OCA) under cholestasis effectively suppressed liver metastasis progression, enhanced the efficacy of immune checkpoint blockade, and prolonged survival of mice.</p><p><strong>Conclusions: </strong>Our study reveals the TME of cholestasis-associated liver metastasis and proposes a new strategy for such patients by targeting bile acid anabolism.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"66"},"PeriodicalIF":9.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218316/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cholestasis-induced phenotypic transformation of neutrophils contributes to immune escape of colorectal cancer liver metastasis.\",\"authors\":\"Li Sun, Nanyan Yang, Zhihong Liu, Xiandong Ye, Mengting Cheng, Lingjun Deng, Junhao Zhang, Jingjing Wu, Min Shi, Wangjun Liao\",\"doi\":\"10.1186/s12929-024-01052-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cholestasis is a common yet severe complication that occurs during the advancement of liver metastasis. However, how cholestasis impacts the development, treatment, and tumor microenvironment (TME) of liver metastasis remains to be elucidated.</p><p><strong>Methods: </strong>Extrahepatic and intrahepatic cholestatic mouse models with liver metastasis were established to detect the differential expression levels of genes, infiltration of immune cells and change in bile acid-associated metabolites by using RNA-Sequencing, flowcytometry, and liquid chromatography and mass spectrometry. Western blot was applied to neutrophils under the stimulation of primary bile acids (BAs) in vitro to study the mechanism of phenotypic alteration. In vitro coculture of BA-treated neutrophils with CD8<sup>+</sup> T cells were performed to study the immune-suppressive effect of phenotypic-altered neutrophils. Clinical samples collected from colorectal cancer patients with liver metastasis and cholestasis were applied to RNA-Seq.</p><p><strong>Results: </strong>Compared to non-cholestatic mice, the progression of liver metastasis of cholestatic mice was significantly accelerated, which was associated with increased neutrophil infiltration and T-cell exclusion. Both neutrophils and T cells expressed higher immunosuppressive markers in the cholestatic mouse model, further indicating that an immunosuppressive tumor microenvironment was induced during cholestasis. Although neutrophils deletion via anti-Ly6G antibody partially hindered liver metastasis progression, it reduced the overall survival of mice. Tauro-β-muricholic acid (Tβ-MCA) and Glycocholic acid (GCA), the two most abundant cholestasis-associated primary BAs, remarkably promoted the expression of Arg1 and iNOS on neutrophils via p38 MAPK signaling pathway. In addition, BAs-pretreated neutrophils significantly suppressed the activation and cytotoxic effects of CD8<sup>+</sup> T cells, indicating that the immunosuppressive phenotype of neutrophils was directly induced by BAs. Importantly, targeting BA anabolism with Obeticholic acid (OCA) under cholestasis effectively suppressed liver metastasis progression, enhanced the efficacy of immune checkpoint blockade, and prolonged survival of mice.</p><p><strong>Conclusions: </strong>Our study reveals the TME of cholestasis-associated liver metastasis and proposes a new strategy for such patients by targeting bile acid anabolism.</p>\",\"PeriodicalId\":15365,\"journal\":{\"name\":\"Journal of Biomedical Science\",\"volume\":\"31 1\",\"pages\":\"66\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218316/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12929-024-01052-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01052-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:胆汁淤积是肝转移进展过程中常见但严重的并发症。然而,胆汁淤积如何影响肝转移瘤的发展、治疗和肿瘤微环境(TME)仍有待阐明:方法:建立肝外胆汁淤积和肝内胆汁淤积肝转移小鼠模型,通过RNA测序、流式细胞仪、液相色谱和质谱法检测基因的不同表达水平、免疫细胞的浸润以及胆汁酸相关代谢物的变化。对体外初级胆汁酸(BA)刺激下的中性粒细胞进行了 Western 印迹,以研究表型改变的机制。将经BA处理的中性粒细胞与CD8+ T细胞进行体外共培养,研究表型改变的中性粒细胞的免疫抑制作用。对肝转移和胆汁淤积的结直肠癌患者的临床样本进行了RNA-Seq分析:结果:与非胆汁淤积小鼠相比,胆汁淤积小鼠的肝转移进展明显加快,这与中性粒细胞浸润和T细胞排斥增加有关。胆汁淤积小鼠模型中的中性粒细胞和T细胞都表达了更高的免疫抑制标记物,进一步表明胆汁淤积期间诱导了免疫抑制肿瘤微环境。虽然通过抗Ly6G抗体去除中性粒细胞部分阻碍了肝转移的进展,但却降低了小鼠的总体存活率。胆汁淤积相关的两种最丰富的原生BA--陶罗-β-木胆酸(Tβ-MCA)和甘胆酸(GCA)通过p38 MAPK信号通路显著促进了中性粒细胞上Arg1和iNOS的表达。此外,经 BAs 预处理的中性粒细胞能显著抑制 CD8+ T 细胞的活化和细胞毒性作用,这表明中性粒细胞的免疫抑制表型是由 BAs 直接诱导的。重要的是,在胆汁淤积的情况下用奥贝胆酸(OCA)靶向BA的合成代谢,能有效抑制肝转移的进展,增强免疫检查点阻断的疗效,并延长小鼠的存活时间:我们的研究揭示了胆汁淤积相关肝转移的TME,并提出了针对胆汁淤积患者的胆汁酸代谢新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cholestasis-induced phenotypic transformation of neutrophils contributes to immune escape of colorectal cancer liver metastasis.

Background: Cholestasis is a common yet severe complication that occurs during the advancement of liver metastasis. However, how cholestasis impacts the development, treatment, and tumor microenvironment (TME) of liver metastasis remains to be elucidated.

Methods: Extrahepatic and intrahepatic cholestatic mouse models with liver metastasis were established to detect the differential expression levels of genes, infiltration of immune cells and change in bile acid-associated metabolites by using RNA-Sequencing, flowcytometry, and liquid chromatography and mass spectrometry. Western blot was applied to neutrophils under the stimulation of primary bile acids (BAs) in vitro to study the mechanism of phenotypic alteration. In vitro coculture of BA-treated neutrophils with CD8+ T cells were performed to study the immune-suppressive effect of phenotypic-altered neutrophils. Clinical samples collected from colorectal cancer patients with liver metastasis and cholestasis were applied to RNA-Seq.

Results: Compared to non-cholestatic mice, the progression of liver metastasis of cholestatic mice was significantly accelerated, which was associated with increased neutrophil infiltration and T-cell exclusion. Both neutrophils and T cells expressed higher immunosuppressive markers in the cholestatic mouse model, further indicating that an immunosuppressive tumor microenvironment was induced during cholestasis. Although neutrophils deletion via anti-Ly6G antibody partially hindered liver metastasis progression, it reduced the overall survival of mice. Tauro-β-muricholic acid (Tβ-MCA) and Glycocholic acid (GCA), the two most abundant cholestasis-associated primary BAs, remarkably promoted the expression of Arg1 and iNOS on neutrophils via p38 MAPK signaling pathway. In addition, BAs-pretreated neutrophils significantly suppressed the activation and cytotoxic effects of CD8+ T cells, indicating that the immunosuppressive phenotype of neutrophils was directly induced by BAs. Importantly, targeting BA anabolism with Obeticholic acid (OCA) under cholestasis effectively suppressed liver metastasis progression, enhanced the efficacy of immune checkpoint blockade, and prolonged survival of mice.

Conclusions: Our study reveals the TME of cholestasis-associated liver metastasis and proposes a new strategy for such patients by targeting bile acid anabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
期刊最新文献
Role of glucagon-like peptide-1 receptor agonists in Alzheimer's disease and Parkinson's disease. Dental pulp mesenchymal stem cell (DPSCs)-derived soluble factors, produced under hypoxic conditions, support angiogenesis via endothelial cell activation and generation of M2-like macrophages. Exploring paraptosis as a therapeutic approach in cancer treatment. The molecular consequences of FOXF1 missense mutations associated with alveolar capillary dysplasia with misalignment of pulmonary veins. CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1