超声波振动辅助铣削三维针刺碳/碳化硅复合材料时,正向和反向切削对刀具磨损行为的影响

IF 5.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Wear Pub Date : 2024-06-21 DOI:10.1016/j.wear.2024.205454
Guangjun Chen , Jiaqi Wang , Jinkai Xu , Zhiwu Han , Huadong Yu , Luquan Ren
{"title":"超声波振动辅助铣削三维针刺碳/碳化硅复合材料时,正向和反向切削对刀具磨损行为的影响","authors":"Guangjun Chen ,&nbsp;Jiaqi Wang ,&nbsp;Jinkai Xu ,&nbsp;Zhiwu Han ,&nbsp;Huadong Yu ,&nbsp;Luquan Ren","doi":"10.1016/j.wear.2024.205454","DOIUrl":null,"url":null,"abstract":"<div><p>C/SiC composites have excellent mechanical properties such as high specific strength and high temperature resistance, and are widely used in aerospace fields. However, due to its special structure and material properties, the tool wear is severe when machining with conventional methods, and the processing quality is poor. The purpose of this paper is to reveal the progressive wear behavior, wear mechanism of the tool, and its effect on machining performance in conventional milling (CM) and ultrasonic vibration-assisted milling (UVM) of C/SiC composites under forward fiber cutting (FC) and reverse fiber cutting (RC). The material removal and heat transfer models were established, and the stress distribution characteristics of cutting -edge were analyzed by finite element method (FEM). Combined with the wear morphology, cutting heat, and cutting force, the tool wear behavior and mechanism in UVM and CM under FC and RC were studied, and their effects on machining quality were analyzed. The results show that there are great differences in heat transfer and removal process between FC and RC. In UVM, the introduction of ultrasonic vibration reduces the adhesion of fine chips, weakens the strong friction and scratching between the hard chips and the cutting -edge, and alleviates the tool wear. The flank wear <em>VB</em> and cutting -edge wear area <em>WA</em> in RC are larger than those in FC, the abrasive wear is intensified, the material even peeling under mechanical shock, and the adhesive wear is more serious. When the tool wear intensifies to a certain extent, the difference of the cutting process caused by mechanical anisotropy of C/SiC composites is weakened, and the surface micro-defects and surface roughness Sa change little under FC and RC. This research contributes to the realization of high-quality and low-cost processing of C/SiC composites.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of forward and reverse cutting on tool wear behavior in ultrasonic vibration-assisted milling of 3D needle-punched C/SiC composites\",\"authors\":\"Guangjun Chen ,&nbsp;Jiaqi Wang ,&nbsp;Jinkai Xu ,&nbsp;Zhiwu Han ,&nbsp;Huadong Yu ,&nbsp;Luquan Ren\",\"doi\":\"10.1016/j.wear.2024.205454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>C/SiC composites have excellent mechanical properties such as high specific strength and high temperature resistance, and are widely used in aerospace fields. However, due to its special structure and material properties, the tool wear is severe when machining with conventional methods, and the processing quality is poor. The purpose of this paper is to reveal the progressive wear behavior, wear mechanism of the tool, and its effect on machining performance in conventional milling (CM) and ultrasonic vibration-assisted milling (UVM) of C/SiC composites under forward fiber cutting (FC) and reverse fiber cutting (RC). The material removal and heat transfer models were established, and the stress distribution characteristics of cutting -edge were analyzed by finite element method (FEM). Combined with the wear morphology, cutting heat, and cutting force, the tool wear behavior and mechanism in UVM and CM under FC and RC were studied, and their effects on machining quality were analyzed. The results show that there are great differences in heat transfer and removal process between FC and RC. In UVM, the introduction of ultrasonic vibration reduces the adhesion of fine chips, weakens the strong friction and scratching between the hard chips and the cutting -edge, and alleviates the tool wear. The flank wear <em>VB</em> and cutting -edge wear area <em>WA</em> in RC are larger than those in FC, the abrasive wear is intensified, the material even peeling under mechanical shock, and the adhesive wear is more serious. When the tool wear intensifies to a certain extent, the difference of the cutting process caused by mechanical anisotropy of C/SiC composites is weakened, and the surface micro-defects and surface roughness Sa change little under FC and RC. This research contributes to the realization of high-quality and low-cost processing of C/SiC composites.</p></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824002199\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824002199","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

C/SiC 复合材料具有高比强度和耐高温等优异的机械性能,被广泛应用于航空航天领域。然而,由于其特殊的结构和材料性能,用传统方法加工时,刀具磨损严重,加工质量差。本文旨在揭示在正向纤维切削(FC)和反向纤维切削(RC)条件下,C/SiC 复合材料在常规铣削(CM)和超声振动辅助铣削(UVM)中的渐进磨损行为、刀具磨损机理及其对加工性能的影响。建立了材料去除和热传递模型,并采用有限元法(FEM)分析了切削边缘的应力分布特征。结合磨损形貌、切削热和切削力,研究了 FC 和 RC 下 UVM 和 CM 的刀具磨损行为和机理,并分析了其对加工质量的影响。结果表明,FC 和 RC 的传热和去除过程存在很大差异。在 UVM 中,超声波振动的引入减少了细小切屑的附着,减弱了硬切屑与切削刃之间的强烈摩擦和划伤,减轻了刀具磨损。RC 的侧面磨损 VB 和切削刃磨损面积 WA 比 FC 大,磨料磨损加剧,材料在机械冲击下甚至会剥落,粘着磨损更加严重。当刀具磨损加剧到一定程度时,C/SiC 复合材料机械各向异性引起的切削过程差异减弱,FC 和 RC 下的表面微缺陷和表面粗糙度 Sa 变化不大。该研究有助于实现 C/SiC 复合材料的高质量、低成本加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of forward and reverse cutting on tool wear behavior in ultrasonic vibration-assisted milling of 3D needle-punched C/SiC composites

C/SiC composites have excellent mechanical properties such as high specific strength and high temperature resistance, and are widely used in aerospace fields. However, due to its special structure and material properties, the tool wear is severe when machining with conventional methods, and the processing quality is poor. The purpose of this paper is to reveal the progressive wear behavior, wear mechanism of the tool, and its effect on machining performance in conventional milling (CM) and ultrasonic vibration-assisted milling (UVM) of C/SiC composites under forward fiber cutting (FC) and reverse fiber cutting (RC). The material removal and heat transfer models were established, and the stress distribution characteristics of cutting -edge were analyzed by finite element method (FEM). Combined with the wear morphology, cutting heat, and cutting force, the tool wear behavior and mechanism in UVM and CM under FC and RC were studied, and their effects on machining quality were analyzed. The results show that there are great differences in heat transfer and removal process between FC and RC. In UVM, the introduction of ultrasonic vibration reduces the adhesion of fine chips, weakens the strong friction and scratching between the hard chips and the cutting -edge, and alleviates the tool wear. The flank wear VB and cutting -edge wear area WA in RC are larger than those in FC, the abrasive wear is intensified, the material even peeling under mechanical shock, and the adhesive wear is more serious. When the tool wear intensifies to a certain extent, the difference of the cutting process caused by mechanical anisotropy of C/SiC composites is weakened, and the surface micro-defects and surface roughness Sa change little under FC and RC. This research contributes to the realization of high-quality and low-cost processing of C/SiC composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wear
Wear 工程技术-材料科学:综合
CiteScore
8.80
自引率
8.00%
发文量
280
审稿时长
47 days
期刊介绍: Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.
期刊最新文献
Tribo-oxidation mechanism of gradient nanostructured Inconel 625 alloy during high-temperature wear Synergetic enhancement of wear resistance of polyimide coatings through the integration of MoS2 nanoflowers and MXene nanosheets Improved corrosion resistance and tribological properties of MXene/NCDs coatings on the Ti6Al4V alloys Mechanism analysis and prediction of bull-nose cutter wear in multi-axis milling of Ti6Al4V with TiAlN coated inserts Evaluating the impact of corrosion inhibitors on grinding process efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1