由 Bi2Se3 片材辅助的近场辐射热整流

A.A. Odebowale, Khalil As'ham, Andergachew Mekonnen Berhe, Nusrat Alim, Haroldo T. Hattori, Andrey E. Miroshnichenko
{"title":"由 Bi2Se3 片材辅助的近场辐射热整流","authors":"A.A. Odebowale,&nbsp;Khalil As'ham,&nbsp;Andergachew Mekonnen Berhe,&nbsp;Nusrat Alim,&nbsp;Haroldo T. Hattori,&nbsp;Andrey E. Miroshnichenko","doi":"10.1016/j.icheatmasstransfer.2024.107707","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to control heat flux at the nanoscale opens up numerous exciting possibilities in modern electronics and the field of information processing. In this research, we propose a design with the focus on achieving efficient thermal rectification at moderate gap and relatively low temperature. This study centers on near-field thermal radiation between temperature dependent indium antimonide (InSb) and silicon carbide (3C-SiC) coated with bismuth selenide (Bi<sub>2</sub>Se<sub>3</sub>). Our investigation sheds light on the critical role played by the Bi<sub>2</sub>Se<sub>3</sub> layer in enhancing various key parameters, including the net radiative flux, and thermal rectification efficiency (<em>η</em>). We achieved a substantial improvement in the <em>η</em> of a near-field radiative thermal rectifier (NFRTR) due to the presence of the Bi<sub>2</sub>Se<sub>3</sub> sheet. This enhancement is contingent on factors such as the Fermi energy (<em>E</em><sub><em>f</em></sub>) of Bi<sub>2</sub>Se<sub>3</sub>, emitter temperature, and the vacuum gap (<em>d</em>). Our study culminated in the identification of an optimal design, achieving an impressive <em>η</em> of 75% at an emitter temperature (<em>T</em><sub><em>H</em></sub>) of 350 K, with vacuum gap (d) set to 20 nm. Furthermore, increasing <em>T</em><sub><em>H</em></sub> to 500 K resulted in even more promising outcomes, with the highest <em>η</em> reaching 93%. The need for operating the optimized device at moderate temperatures is to strike a balance between efficiency, safety, cost-effectiveness, and material compatibility. These findings represent a significant step forward in the development of efficient Bi<sub>2</sub>Se<sub>3</sub>-based NFRTRs, paving the way for future applications in thermal management, energy conversion systems, and thermal logic gates.</p></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S073519332400469X/pdfft?md5=288d5d40b4fbfacd5b0a4b2a360fb5c7&pid=1-s2.0-S073519332400469X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Near-field radiative thermal rectification assisted by Bi2Se3 sheet\",\"authors\":\"A.A. Odebowale,&nbsp;Khalil As'ham,&nbsp;Andergachew Mekonnen Berhe,&nbsp;Nusrat Alim,&nbsp;Haroldo T. Hattori,&nbsp;Andrey E. Miroshnichenko\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.107707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability to control heat flux at the nanoscale opens up numerous exciting possibilities in modern electronics and the field of information processing. In this research, we propose a design with the focus on achieving efficient thermal rectification at moderate gap and relatively low temperature. This study centers on near-field thermal radiation between temperature dependent indium antimonide (InSb) and silicon carbide (3C-SiC) coated with bismuth selenide (Bi<sub>2</sub>Se<sub>3</sub>). Our investigation sheds light on the critical role played by the Bi<sub>2</sub>Se<sub>3</sub> layer in enhancing various key parameters, including the net radiative flux, and thermal rectification efficiency (<em>η</em>). We achieved a substantial improvement in the <em>η</em> of a near-field radiative thermal rectifier (NFRTR) due to the presence of the Bi<sub>2</sub>Se<sub>3</sub> sheet. This enhancement is contingent on factors such as the Fermi energy (<em>E</em><sub><em>f</em></sub>) of Bi<sub>2</sub>Se<sub>3</sub>, emitter temperature, and the vacuum gap (<em>d</em>). Our study culminated in the identification of an optimal design, achieving an impressive <em>η</em> of 75% at an emitter temperature (<em>T</em><sub><em>H</em></sub>) of 350 K, with vacuum gap (d) set to 20 nm. Furthermore, increasing <em>T</em><sub><em>H</em></sub> to 500 K resulted in even more promising outcomes, with the highest <em>η</em> reaching 93%. The need for operating the optimized device at moderate temperatures is to strike a balance between efficiency, safety, cost-effectiveness, and material compatibility. These findings represent a significant step forward in the development of efficient Bi<sub>2</sub>Se<sub>3</sub>-based NFRTRs, paving the way for future applications in thermal management, energy conversion systems, and thermal logic gates.</p></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S073519332400469X/pdfft?md5=288d5d40b4fbfacd5b0a4b2a360fb5c7&pid=1-s2.0-S073519332400469X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S073519332400469X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073519332400469X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在纳米尺度上控制热通量的能力为现代电子学和信息处理领域带来了无数令人兴奋的可能性。在这项研究中,我们提出了一种设计,重点是在中等间隙和相对较低的温度下实现高效热整流。这项研究的核心是温度相关性锑化铟(InSb)和涂有硒化铋(Bi2Se3)的碳化硅(3C-SiC)之间的近场热辐射。我们的研究揭示了 Bi2Se3 层在提高各种关键参数(包括净辐射通量和热整流效率 (η))方面的关键作用。由于 Bi2Se3 层的存在,我们大大提高了近场辐射热整流器(NFRTR)的η。这种改进取决于 Bi2Se3 的费米能 (Ef)、发射器温度和真空间隙 (d) 等因素。我们的研究最终确定了最佳设计,在发射器温度 (TH) 为 350 K、真空间隙 (d) 设为 20 nm 时,η 达到了令人印象深刻的 75%。此外,将发射极温度升高到 500 K 时,结果更加理想,最高 η 达到 93%。在适度温度下运行优化器件的必要性在于在效率、安全性、成本效益和材料兼容性之间取得平衡。这些发现标志着在开发基于 Bi2Se3 的高效 NFRTR 方面迈出了重要一步,为未来在热管理、能量转换系统和热逻辑门方面的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-field radiative thermal rectification assisted by Bi2Se3 sheet

The ability to control heat flux at the nanoscale opens up numerous exciting possibilities in modern electronics and the field of information processing. In this research, we propose a design with the focus on achieving efficient thermal rectification at moderate gap and relatively low temperature. This study centers on near-field thermal radiation between temperature dependent indium antimonide (InSb) and silicon carbide (3C-SiC) coated with bismuth selenide (Bi2Se3). Our investigation sheds light on the critical role played by the Bi2Se3 layer in enhancing various key parameters, including the net radiative flux, and thermal rectification efficiency (η). We achieved a substantial improvement in the η of a near-field radiative thermal rectifier (NFRTR) due to the presence of the Bi2Se3 sheet. This enhancement is contingent on factors such as the Fermi energy (Ef) of Bi2Se3, emitter temperature, and the vacuum gap (d). Our study culminated in the identification of an optimal design, achieving an impressive η of 75% at an emitter temperature (TH) of 350 K, with vacuum gap (d) set to 20 nm. Furthermore, increasing TH to 500 K resulted in even more promising outcomes, with the highest η reaching 93%. The need for operating the optimized device at moderate temperatures is to strike a balance between efficiency, safety, cost-effectiveness, and material compatibility. These findings represent a significant step forward in the development of efficient Bi2Se3-based NFRTRs, paving the way for future applications in thermal management, energy conversion systems, and thermal logic gates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
期刊最新文献
A new approach for heat transfer coefficient determination in triply periodic minimal surface-based heat exchangers Experimental study of the thermal performance of a new type of PV roof Modeling of the evaporation process of a pair of sessile droplets using a point source model (PSM) Heat transfer characterization of waste heat recovery heat exchanger based on flexible hybrid triply periodic minimal surfaces (TPMS) Numerical study on the synergistic effects of ultrasonic transducers and nano-enhanced phase change material in CPU thermal management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1