太阳辐照分量分离基准:动态受限天空条件的关键作用

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS Renewable and Sustainable Energy Reviews Pub Date : 2024-07-01 DOI:10.1016/j.rser.2024.114678
José A. Ruiz-Arias , Christian A. Gueymard
{"title":"太阳辐照分量分离基准:动态受限天空条件的关键作用","authors":"José A. Ruiz-Arias ,&nbsp;Christian A. Gueymard","doi":"10.1016/j.rser.2024.114678","DOIUrl":null,"url":null,"abstract":"<div><p>The decomposition of global horizontal irradiance into its direct and diffuse components is critical in many applications. To guarantee accurate results in practice, the existing separation techniques need to be validated against reference ground measurements from a variety of stations. Here, four versions of the recent GISPLIT model are compared to a strong benchmark constituted from nine leading models of the literature. The validation database includes ≈24 million data points and is constituted of one calendar year of 1-min high-quality data from 118 research-class world stations covering all continents and all five major Köppen-Geiger climates. The results are analyzed with various statistical metrics to be as generalizable and explicative as possible. It is found that even the simpler GISPLIT version reduces the mean site RMSE of the best benchmark model by ≈11 % for the direct component and ≈17 % for the diffuse component. The improvement reaches ≈17 % and ≈25 %, respectively, when using the best GISPLIT version. The improvements are more important in cases of highly variable sky cloudiness, per the CAELUS sky classification scheme. A ranking analysis shows that all four versions of GISPLIT ranked higher than the benchmark models, and that the use of machine learning significantly improves the separation performance. In contrast, only marginal improvements are obtained through preliminary conditioning by Köppen-Geiger climate class. Overall, it is concluded that GISPLITv3, which is not dependent on climate class but makes use of machine learning for the most challenging sky conditions, can be asserted as the new high-performance quasi-universal separation model.</p></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364032124004040/pdfft?md5=cdc63ca531a9767770ea97fefa69ea14&pid=1-s2.0-S1364032124004040-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solar irradiance component separation benchmarking: The critical role of dynamically-constrained sky conditions\",\"authors\":\"José A. Ruiz-Arias ,&nbsp;Christian A. Gueymard\",\"doi\":\"10.1016/j.rser.2024.114678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The decomposition of global horizontal irradiance into its direct and diffuse components is critical in many applications. To guarantee accurate results in practice, the existing separation techniques need to be validated against reference ground measurements from a variety of stations. Here, four versions of the recent GISPLIT model are compared to a strong benchmark constituted from nine leading models of the literature. The validation database includes ≈24 million data points and is constituted of one calendar year of 1-min high-quality data from 118 research-class world stations covering all continents and all five major Köppen-Geiger climates. The results are analyzed with various statistical metrics to be as generalizable and explicative as possible. It is found that even the simpler GISPLIT version reduces the mean site RMSE of the best benchmark model by ≈11 % for the direct component and ≈17 % for the diffuse component. The improvement reaches ≈17 % and ≈25 %, respectively, when using the best GISPLIT version. The improvements are more important in cases of highly variable sky cloudiness, per the CAELUS sky classification scheme. A ranking analysis shows that all four versions of GISPLIT ranked higher than the benchmark models, and that the use of machine learning significantly improves the separation performance. In contrast, only marginal improvements are obtained through preliminary conditioning by Köppen-Geiger climate class. Overall, it is concluded that GISPLITv3, which is not dependent on climate class but makes use of machine learning for the most challenging sky conditions, can be asserted as the new high-performance quasi-universal separation model.</p></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1364032124004040/pdfft?md5=cdc63ca531a9767770ea97fefa69ea14&pid=1-s2.0-S1364032124004040-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124004040\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124004040","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在许多应用中,将全球水平辐照度分解为直接辐照度和漫射辐照度至关重要。为了保证实际结果的准确性,现有的分离技术需要根据不同站点的参考地面测量结果进行验证。在这里,最新 GISPLIT 模型的四个版本与文献中九个主要模型组成的强大基准进行了比较。验证数据库包括≈2400 万个数据点,由 118 个世界级研究台站提供的一个日历年的 1 分钟高质量数据组成,涵盖各大洲和所有五大柯本-盖革气候区。分析结果采用了各种统计指标,以尽可能具有普遍性和解释性。结果发现,即使是较简单的 GISPLIT 版本,也能将最佳基准模型的平均站点均方根误差(RMSE)直接部分降低≈11%,扩散部分降低≈17%。在使用最佳 GISPLIT 版本时,改进幅度分别达到 ≈17 % 和 ≈25 %。根据 CAELUS 天空分类方案,在天空云量变化很大的情况下,改进幅度更大。排名分析表明,所有四个 GISPLIT 版本的排名都高于基准模型,而且机器学习的使用显著提高了分离性能。相比之下,通过 Köppen-Geiger 气候类别的初步调节只能获得微弱的改进。总之,结论是 GISPLITv3 不依赖于气候类别,而是利用机器学习来应对最具挑战性的天空条件,可以断言它是新的高性能准通用分离模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solar irradiance component separation benchmarking: The critical role of dynamically-constrained sky conditions

The decomposition of global horizontal irradiance into its direct and diffuse components is critical in many applications. To guarantee accurate results in practice, the existing separation techniques need to be validated against reference ground measurements from a variety of stations. Here, four versions of the recent GISPLIT model are compared to a strong benchmark constituted from nine leading models of the literature. The validation database includes ≈24 million data points and is constituted of one calendar year of 1-min high-quality data from 118 research-class world stations covering all continents and all five major Köppen-Geiger climates. The results are analyzed with various statistical metrics to be as generalizable and explicative as possible. It is found that even the simpler GISPLIT version reduces the mean site RMSE of the best benchmark model by ≈11 % for the direct component and ≈17 % for the diffuse component. The improvement reaches ≈17 % and ≈25 %, respectively, when using the best GISPLIT version. The improvements are more important in cases of highly variable sky cloudiness, per the CAELUS sky classification scheme. A ranking analysis shows that all four versions of GISPLIT ranked higher than the benchmark models, and that the use of machine learning significantly improves the separation performance. In contrast, only marginal improvements are obtained through preliminary conditioning by Köppen-Geiger climate class. Overall, it is concluded that GISPLITv3, which is not dependent on climate class but makes use of machine learning for the most challenging sky conditions, can be asserted as the new high-performance quasi-universal separation model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
期刊最新文献
Large-scale seaweed cultivation as a nature solution for carbon-negative economy and restorative environmental stewardship: Lessons from China Impacts of lifestyle changes on energy demand and greenhouse gas emissions in Germany Adaptive reactive power control for voltage rise mitigation on distribution network with high photovoltaic penetration Comparative assessment of global warming potential of gasoline, battery, and hybrid vehicles in India Towards robust and scalable dispatch modeling of long-duration energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1