Kanika Sood , Sylvie Gosselin , Abderrahman El Bakali , Alessandro Faccinetto , Pascale Desgroux , Kevin M. Van Geem , Laurent Gasnot , Luc-Sy Tran
{"title":"掺杂苯甲醚的火焰中含氧芳烃形成的定量研究","authors":"Kanika Sood , Sylvie Gosselin , Abderrahman El Bakali , Alessandro Faccinetto , Pascale Desgroux , Kevin M. Van Geem , Laurent Gasnot , Luc-Sy Tran","doi":"10.1016/j.proci.2024.105289","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies have demonstrated that several oxygenated aromatics, including oxygenated polycyclic aromatic hydrocarbons (OPAHs) possessing different functional groups, are formed during anisole combustion. However, a quantitative analysis for these species is still very limited. This limitation inhibits the development and validation of formation kinetic mechanisms for these toxic air pollutants. This study addresses this gap by investigating quantitatively, a fuel-rich anisole-doped laminar premixed flame stabilized on a Holthuis burner at atmospheric pressure with an equivalence ratio of 1.90. Gas samples were extracted from the flame using a quartz nozzle and analyzed by gas chromatography (GC) preceded by a special online pre-concentration trap system, which decreases the detection limit by a factor of over 1000 compared to a conventional GC. Major species (reactants, CO, etc.), 32 small intermediates (C<sub>1</sub>-C<sub>5</sub> like formaldehyde, acetaldehyde, acetylene, cyclopentadiene, etc.), 12 non-oxygenated aromatics (benzene, naphthalene, phenanthrene, etc.), and especially 24 oxygenated aromatics (phenol, 2,2-biphenol, dibenzofuran, 9H-xanthene…) including several OPAHs at ppb concentration levels were quantified. Interestingly, flame structure analysis shows that oxygenated aromatics peak closer to the burner surface as compared to non-oxygenated aromatics. The number of rings for non-oxygenated aromatics was observed to increase with the height above the burner, indicating that one-ring aromatics form before two- or three-ring aromatics. However, this is not always the case for oxygenated aromatics. Three-ring OPAHs are almost as abundant as the three-ring PAHs in terms of quantity, some three-ring OPAHs are even twice as abundant as their analogous PAHs (e.g., benzofuran vs fluorene, 9H-xanthene vs anthracene, etc.), which emphasizes their importance and certainly implies that these species need to be considered in kinetic studies. However, unlike PAHs, only less than half of the quantified OPAHs are currently present in literature models for anisole combustion.</p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"40 1","pages":"Article 105289"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative investigation of the formation of oxygenated aromatics in an anisole-doped flame\",\"authors\":\"Kanika Sood , Sylvie Gosselin , Abderrahman El Bakali , Alessandro Faccinetto , Pascale Desgroux , Kevin M. Van Geem , Laurent Gasnot , Luc-Sy Tran\",\"doi\":\"10.1016/j.proci.2024.105289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent studies have demonstrated that several oxygenated aromatics, including oxygenated polycyclic aromatic hydrocarbons (OPAHs) possessing different functional groups, are formed during anisole combustion. However, a quantitative analysis for these species is still very limited. This limitation inhibits the development and validation of formation kinetic mechanisms for these toxic air pollutants. This study addresses this gap by investigating quantitatively, a fuel-rich anisole-doped laminar premixed flame stabilized on a Holthuis burner at atmospheric pressure with an equivalence ratio of 1.90. Gas samples were extracted from the flame using a quartz nozzle and analyzed by gas chromatography (GC) preceded by a special online pre-concentration trap system, which decreases the detection limit by a factor of over 1000 compared to a conventional GC. Major species (reactants, CO, etc.), 32 small intermediates (C<sub>1</sub>-C<sub>5</sub> like formaldehyde, acetaldehyde, acetylene, cyclopentadiene, etc.), 12 non-oxygenated aromatics (benzene, naphthalene, phenanthrene, etc.), and especially 24 oxygenated aromatics (phenol, 2,2-biphenol, dibenzofuran, 9H-xanthene…) including several OPAHs at ppb concentration levels were quantified. Interestingly, flame structure analysis shows that oxygenated aromatics peak closer to the burner surface as compared to non-oxygenated aromatics. The number of rings for non-oxygenated aromatics was observed to increase with the height above the burner, indicating that one-ring aromatics form before two- or three-ring aromatics. However, this is not always the case for oxygenated aromatics. Three-ring OPAHs are almost as abundant as the three-ring PAHs in terms of quantity, some three-ring OPAHs are even twice as abundant as their analogous PAHs (e.g., benzofuran vs fluorene, 9H-xanthene vs anthracene, etc.), which emphasizes their importance and certainly implies that these species need to be considered in kinetic studies. However, unlike PAHs, only less than half of the quantified OPAHs are currently present in literature models for anisole combustion.</p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"40 1\",\"pages\":\"Article 105289\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748924000993\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748924000993","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Quantitative investigation of the formation of oxygenated aromatics in an anisole-doped flame
Recent studies have demonstrated that several oxygenated aromatics, including oxygenated polycyclic aromatic hydrocarbons (OPAHs) possessing different functional groups, are formed during anisole combustion. However, a quantitative analysis for these species is still very limited. This limitation inhibits the development and validation of formation kinetic mechanisms for these toxic air pollutants. This study addresses this gap by investigating quantitatively, a fuel-rich anisole-doped laminar premixed flame stabilized on a Holthuis burner at atmospheric pressure with an equivalence ratio of 1.90. Gas samples were extracted from the flame using a quartz nozzle and analyzed by gas chromatography (GC) preceded by a special online pre-concentration trap system, which decreases the detection limit by a factor of over 1000 compared to a conventional GC. Major species (reactants, CO, etc.), 32 small intermediates (C1-C5 like formaldehyde, acetaldehyde, acetylene, cyclopentadiene, etc.), 12 non-oxygenated aromatics (benzene, naphthalene, phenanthrene, etc.), and especially 24 oxygenated aromatics (phenol, 2,2-biphenol, dibenzofuran, 9H-xanthene…) including several OPAHs at ppb concentration levels were quantified. Interestingly, flame structure analysis shows that oxygenated aromatics peak closer to the burner surface as compared to non-oxygenated aromatics. The number of rings for non-oxygenated aromatics was observed to increase with the height above the burner, indicating that one-ring aromatics form before two- or three-ring aromatics. However, this is not always the case for oxygenated aromatics. Three-ring OPAHs are almost as abundant as the three-ring PAHs in terms of quantity, some three-ring OPAHs are even twice as abundant as their analogous PAHs (e.g., benzofuran vs fluorene, 9H-xanthene vs anthracene, etc.), which emphasizes their importance and certainly implies that these species need to be considered in kinetic studies. However, unlike PAHs, only less than half of the quantified OPAHs are currently present in literature models for anisole combustion.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.