利用 MOF 层增强韧性金属锌阳极,打造高性能锌离子电池

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-07-01 DOI:10.1016/j.ensm.2024.103616
Weiwei Zhang , Weitong Qi , Kai Yang , Yuanyuan Hu , Fuyi Jiang , Wenbao Liu , Lingyu Du , Zhenhua Yan , Jianchao Sun
{"title":"利用 MOF 层增强韧性金属锌阳极,打造高性能锌离子电池","authors":"Weiwei Zhang ,&nbsp;Weitong Qi ,&nbsp;Kai Yang ,&nbsp;Yuanyuan Hu ,&nbsp;Fuyi Jiang ,&nbsp;Wenbao Liu ,&nbsp;Lingyu Du ,&nbsp;Zhenhua Yan ,&nbsp;Jianchao Sun","doi":"10.1016/j.ensm.2024.103616","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs) have been used to stabilize the metal zinc anode, yet the developed coating materials ignore the influence of intergranular space on deteriorating Zn electrode. Herein, we propose the channel sizes of MOFs as the key control factor to balance the zinc ion flux and Zn<sup>2+</sup> desolvation behavior within the channels and between the intergranular spaces. Among three coating layers made by MOFs, the MOF-5W layer with confined spaces and channels is capable to promote the spontaneous desolvation process. The activated surface sites on MOF-5W endow the intergranular channels with accelerated ion transportation and spontaneous Zn<sup>2+</sup> desolvation. Two kinds of migration paths are well-matched, as the MOF-5W@Zn anode shows Zn stripping/plating over 5000 cycles at 40 mA cm<sup>‒2</sup>, as well as cycling stability of 1050 h with high areal capacity of 10 mAh cm<sup>‒2</sup>. The findings enlighten the innovative research for tough Zn anode.</p></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting tough metal Zn anode by MOF layer for high-performance zinc-ion batteries\",\"authors\":\"Weiwei Zhang ,&nbsp;Weitong Qi ,&nbsp;Kai Yang ,&nbsp;Yuanyuan Hu ,&nbsp;Fuyi Jiang ,&nbsp;Wenbao Liu ,&nbsp;Lingyu Du ,&nbsp;Zhenhua Yan ,&nbsp;Jianchao Sun\",\"doi\":\"10.1016/j.ensm.2024.103616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-organic frameworks (MOFs) have been used to stabilize the metal zinc anode, yet the developed coating materials ignore the influence of intergranular space on deteriorating Zn electrode. Herein, we propose the channel sizes of MOFs as the key control factor to balance the zinc ion flux and Zn<sup>2+</sup> desolvation behavior within the channels and between the intergranular spaces. Among three coating layers made by MOFs, the MOF-5W layer with confined spaces and channels is capable to promote the spontaneous desolvation process. The activated surface sites on MOF-5W endow the intergranular channels with accelerated ion transportation and spontaneous Zn<sup>2+</sup> desolvation. Two kinds of migration paths are well-matched, as the MOF-5W@Zn anode shows Zn stripping/plating over 5000 cycles at 40 mA cm<sup>‒2</sup>, as well as cycling stability of 1050 h with high areal capacity of 10 mAh cm<sup>‒2</sup>. The findings enlighten the innovative research for tough Zn anode.</p></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724004422\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724004422","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)已被用于稳定金属锌阳极,但所开发的涂层材料忽略了晶间空隙对锌电极劣化的影响。在此,我们提出将 MOFs 的沟道尺寸作为关键控制因素,以平衡沟道内和晶间隙间的锌离子通量和 Zn2+ 脱溶行为。在 MOFs 制成的三层涂层中,具有封闭空间和通道的 MOF-5W 层能够促进自发脱溶过程。MOF-5W 上的活化表面位点赋予了晶间通道加速离子迁移和 Zn2+ 自发脱溶的能力。两种迁移路径匹配良好,MOF-5W@Zn 阳极在 40 mA cm-2 的条件下循环 5000 次以上可实现 Zn 剥离/电镀,并具有 1050 小时的循环稳定性和 10 mAh cm-2 的高电容。这些发现为韧性锌阳极的创新研究提供了启迪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting tough metal Zn anode by MOF layer for high-performance zinc-ion batteries

Metal-organic frameworks (MOFs) have been used to stabilize the metal zinc anode, yet the developed coating materials ignore the influence of intergranular space on deteriorating Zn electrode. Herein, we propose the channel sizes of MOFs as the key control factor to balance the zinc ion flux and Zn2+ desolvation behavior within the channels and between the intergranular spaces. Among three coating layers made by MOFs, the MOF-5W layer with confined spaces and channels is capable to promote the spontaneous desolvation process. The activated surface sites on MOF-5W endow the intergranular channels with accelerated ion transportation and spontaneous Zn2+ desolvation. Two kinds of migration paths are well-matched, as the MOF-5W@Zn anode shows Zn stripping/plating over 5000 cycles at 40 mA cm‒2, as well as cycling stability of 1050 h with high areal capacity of 10 mAh cm‒2. The findings enlighten the innovative research for tough Zn anode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Revealing the Intricacies of Natural Convection: A Key Factor in Aqueous Zinc Battery Design Advanced Methods for Characterizing Battery Interfaces: Towards a Comprehensive Understanding of Interfacial Evolution in Modern Batteries Engineering Rare Earth Metal Ce-N Coordination as Catalyst for High Redox Kinetics in Lithium-Sulfur Batteries An electrocatalytic iodine oxidations-based configuration for hydrogen and I2/I3− co-productions driven by the Zn-air/iodine battery NaLiFe(C2O4)2: A Polyanionic Li/Na-ion Battery Cathode Exhibiting Cationic and Anionic Redox
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1