Mamadou Simina Dramé , Pape Mbagnick N'Diaye , Serigne Abdoul Aziz Niang , Ismaila Diallo , Astou Sarr , Ahmed Gueye , Demba Ndao Niang
{"title":"塞内加尔姆布尔的云层特征及其对太阳辐射的影响","authors":"Mamadou Simina Dramé , Pape Mbagnick N'Diaye , Serigne Abdoul Aziz Niang , Ismaila Diallo , Astou Sarr , Ahmed Gueye , Demba Ndao Niang","doi":"10.1016/j.jastp.2024.106284","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to evaluate the clouds seasonal occurrence characteristics, and to estimate their impact on solar radiation in Mbour, Senegal, West Africa. Here, we use datasets from various sources including: i) observations from the Clouds and Earth's Radiant Energy System satellite sensors, ii) in situ shortwave radiation measurement obtained from the Mbour station, and iii) the outgoing longwave radiation (OLR) obtained from the National Centers for Environmental Prediction reanalysis data. Results show a marked seasonality, associated with high spatial variation in terms of cloud occurrence over Senegal. The maximum cloud occurrences are observed during the wet summer season (June–October), whilst the minimum cloud occurrences are recorded during the long-dry season from November to May. During the monsoon season the cloud activity becomes more intense with a total cloud cover of about 80%, a cloud optical depth of around 7, and a high convective activity illustrated by a low OLR (below 240 W/m<sup>2</sup>). Likewise, across Senegal a strong north-south gradient of the cloud characteristics is observed. Based on quantitative comparison between cloud occurrence and radiation measurement, results show an important seasonal impact on available solar potential in Mbour. Conversely to the cloud occurrence, the maximum of both direct normal and global solar potentials is recorded during the dry season, coinciding with the period with clean sky. An investigation of the cloud influence on solar radiation on selected study cases indicates a decrease of 60% (80%) for the total (direct normal) radiation during the peak of the summer monsoon season.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"261 ","pages":"Article 106284"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the characterization of Cloud occurrence and its impact on solar radiation in Mbour, Senegal\",\"authors\":\"Mamadou Simina Dramé , Pape Mbagnick N'Diaye , Serigne Abdoul Aziz Niang , Ismaila Diallo , Astou Sarr , Ahmed Gueye , Demba Ndao Niang\",\"doi\":\"10.1016/j.jastp.2024.106284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study is to evaluate the clouds seasonal occurrence characteristics, and to estimate their impact on solar radiation in Mbour, Senegal, West Africa. Here, we use datasets from various sources including: i) observations from the Clouds and Earth's Radiant Energy System satellite sensors, ii) in situ shortwave radiation measurement obtained from the Mbour station, and iii) the outgoing longwave radiation (OLR) obtained from the National Centers for Environmental Prediction reanalysis data. Results show a marked seasonality, associated with high spatial variation in terms of cloud occurrence over Senegal. The maximum cloud occurrences are observed during the wet summer season (June–October), whilst the minimum cloud occurrences are recorded during the long-dry season from November to May. During the monsoon season the cloud activity becomes more intense with a total cloud cover of about 80%, a cloud optical depth of around 7, and a high convective activity illustrated by a low OLR (below 240 W/m<sup>2</sup>). Likewise, across Senegal a strong north-south gradient of the cloud characteristics is observed. Based on quantitative comparison between cloud occurrence and radiation measurement, results show an important seasonal impact on available solar potential in Mbour. Conversely to the cloud occurrence, the maximum of both direct normal and global solar potentials is recorded during the dry season, coinciding with the period with clean sky. An investigation of the cloud influence on solar radiation on selected study cases indicates a decrease of 60% (80%) for the total (direct normal) radiation during the peak of the summer monsoon season.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"261 \",\"pages\":\"Article 106284\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001123\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001123","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
On the characterization of Cloud occurrence and its impact on solar radiation in Mbour, Senegal
The objective of this study is to evaluate the clouds seasonal occurrence characteristics, and to estimate their impact on solar radiation in Mbour, Senegal, West Africa. Here, we use datasets from various sources including: i) observations from the Clouds and Earth's Radiant Energy System satellite sensors, ii) in situ shortwave radiation measurement obtained from the Mbour station, and iii) the outgoing longwave radiation (OLR) obtained from the National Centers for Environmental Prediction reanalysis data. Results show a marked seasonality, associated with high spatial variation in terms of cloud occurrence over Senegal. The maximum cloud occurrences are observed during the wet summer season (June–October), whilst the minimum cloud occurrences are recorded during the long-dry season from November to May. During the monsoon season the cloud activity becomes more intense with a total cloud cover of about 80%, a cloud optical depth of around 7, and a high convective activity illustrated by a low OLR (below 240 W/m2). Likewise, across Senegal a strong north-south gradient of the cloud characteristics is observed. Based on quantitative comparison between cloud occurrence and radiation measurement, results show an important seasonal impact on available solar potential in Mbour. Conversely to the cloud occurrence, the maximum of both direct normal and global solar potentials is recorded during the dry season, coinciding with the period with clean sky. An investigation of the cloud influence on solar radiation on selected study cases indicates a decrease of 60% (80%) for the total (direct normal) radiation during the peak of the summer monsoon season.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.