{"title":"全球雷电定位网络(WWLLN)和印度雷电探测传感器网络(LDSN)数据的相互比较","authors":"Alok Taori , Arun Suryavanshi , Rounaq Goenka , Degala Venkatesh , G. Srinivasa Rao","doi":"10.1016/j.jastp.2024.106286","DOIUrl":null,"url":null,"abstract":"<div><p>Atmospheric lightning is a dominant weather related disaster which requires continuous monitoring efforts. While the world wide lightning location network (WWLLN) measures the very low frequency (VLF) signals emanating from the lightning, other regional networks, such as Lightning Detection Sensor Network (LDSN) use the broad band radio frequency signals. Present investigation compares the cloud-to-ground (CG) lightning occurrences recorded by the WWLLN and LDSN during 02 October – October 09, 2022 over India. Results show that though the WWLLN monitored the CG lightning occurrences about 20% lesser than the LDSN, spatial distribution of the occurrences and trends were in very good agreement.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"261 ","pages":"Article 106286"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-comparison of World Wide Lightning Location Network (WWLLN) and Lightning Detection Sensor Network (LDSN) data over India\",\"authors\":\"Alok Taori , Arun Suryavanshi , Rounaq Goenka , Degala Venkatesh , G. Srinivasa Rao\",\"doi\":\"10.1016/j.jastp.2024.106286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atmospheric lightning is a dominant weather related disaster which requires continuous monitoring efforts. While the world wide lightning location network (WWLLN) measures the very low frequency (VLF) signals emanating from the lightning, other regional networks, such as Lightning Detection Sensor Network (LDSN) use the broad band radio frequency signals. Present investigation compares the cloud-to-ground (CG) lightning occurrences recorded by the WWLLN and LDSN during 02 October – October 09, 2022 over India. Results show that though the WWLLN monitored the CG lightning occurrences about 20% lesser than the LDSN, spatial distribution of the occurrences and trends were in very good agreement.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"261 \",\"pages\":\"Article 106286\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001147\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001147","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Inter-comparison of World Wide Lightning Location Network (WWLLN) and Lightning Detection Sensor Network (LDSN) data over India
Atmospheric lightning is a dominant weather related disaster which requires continuous monitoring efforts. While the world wide lightning location network (WWLLN) measures the very low frequency (VLF) signals emanating from the lightning, other regional networks, such as Lightning Detection Sensor Network (LDSN) use the broad band radio frequency signals. Present investigation compares the cloud-to-ground (CG) lightning occurrences recorded by the WWLLN and LDSN during 02 October – October 09, 2022 over India. Results show that though the WWLLN monitored the CG lightning occurrences about 20% lesser than the LDSN, spatial distribution of the occurrences and trends were in very good agreement.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.