通过优化镁在纤维状纳米二氧化硅支架上的分散增强氢吸附:动力学和热力学研究

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED Microporous and Mesoporous Materials Pub Date : 2024-06-26 DOI:10.1016/j.micromeso.2024.113232
B.A. Abdulkadir , M. Ismail , H.D. Setiabudi
{"title":"通过优化镁在纤维状纳米二氧化硅支架上的分散增强氢吸附:动力学和热力学研究","authors":"B.A. Abdulkadir ,&nbsp;M. Ismail ,&nbsp;H.D. Setiabudi","doi":"10.1016/j.micromeso.2024.113232","DOIUrl":null,"url":null,"abstract":"<div><p>Silica material, particularly, fibrous nano-silica (FNS) is one of the potential scaffolds for hydrogen storage, however, low hydrogen adsorption limits its application. To improve its adsorption capacities, the incorporation of active metal, particularly magnesium (Mg), was prepared. FNS with well-developed pore structures and a good surface area were synthesized. Various amounts of Mg (1–5 wt%) were infiltrated into the FNS. To study the effect of metal loading, the adsorbents were characterized by their chemical structure, crystal phase, morphology/elemental composition, and textural properties. Subsequently, hydrogen adsorption studies were conducted where different reaction conditions, including metal loading, catalyst loading, and temperature were studied. Furthermore, kinetic and thermodynamic studies were conducted based on the Langmuir and Van't Hoff models. The results of the characterizations show that the Mg metal was well dispersed into the porous FNS with no significant changes in the original structure. The optimum adsorption of 1.90 wt% was achieved at 1.0 wt% Mg loading, 0.1 g catalyst loading, and 423 K temperature. Kinetic studies demonstrated that the adsorption process fits the pseudo-second-order reaction. The 1%Mg/FNS adsorbents showed good reusability where 5 runs were conducted with &lt;5 % loss in activity. Therefore, this result indicated that infiltration of Mg into the silica is one of the most active approaches in improving the hydrogen adsorption capacities of FNS.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing hydrogen adsorption through optimized magnesium dispersion on fibrous nano-silica scaffold: Kinetic and thermodynamic studies\",\"authors\":\"B.A. Abdulkadir ,&nbsp;M. Ismail ,&nbsp;H.D. Setiabudi\",\"doi\":\"10.1016/j.micromeso.2024.113232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silica material, particularly, fibrous nano-silica (FNS) is one of the potential scaffolds for hydrogen storage, however, low hydrogen adsorption limits its application. To improve its adsorption capacities, the incorporation of active metal, particularly magnesium (Mg), was prepared. FNS with well-developed pore structures and a good surface area were synthesized. Various amounts of Mg (1–5 wt%) were infiltrated into the FNS. To study the effect of metal loading, the adsorbents were characterized by their chemical structure, crystal phase, morphology/elemental composition, and textural properties. Subsequently, hydrogen adsorption studies were conducted where different reaction conditions, including metal loading, catalyst loading, and temperature were studied. Furthermore, kinetic and thermodynamic studies were conducted based on the Langmuir and Van't Hoff models. The results of the characterizations show that the Mg metal was well dispersed into the porous FNS with no significant changes in the original structure. The optimum adsorption of 1.90 wt% was achieved at 1.0 wt% Mg loading, 0.1 g catalyst loading, and 423 K temperature. Kinetic studies demonstrated that the adsorption process fits the pseudo-second-order reaction. The 1%Mg/FNS adsorbents showed good reusability where 5 runs were conducted with &lt;5 % loss in activity. Therefore, this result indicated that infiltration of Mg into the silica is one of the most active approaches in improving the hydrogen adsorption capacities of FNS.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124002543\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124002543","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

二氧化硅材料,特别是纤维状纳米二氧化硅(FNS),是一种潜在的储氢支架,然而,较低的氢吸附能力限制了它的应用。为了提高其吸附能力,制备过程中加入了活性金属,特别是镁(Mg)。合成的 FNS 具有发达的孔隙结构和良好的表面积。在 FNS 中渗入了不同含量的镁(1-5 wt%)。为了研究金属负载的影响,对吸附剂的化学结构、晶相、形态/元素组成和纹理特性进行了表征。随后进行了氢气吸附研究,研究了不同的反应条件,包括金属负载、催化剂负载和温度。此外,还根据 Langmuir 和 Van't Hoff 模型进行了动力学和热力学研究。表征结果表明,金属镁很好地分散在多孔 FNS 中,原始结构没有发生显著变化。在镁负载量为 1.0 wt%、催化剂负载量为 0.1 g、温度为 423 K 时,最佳吸附量为 1.90 wt%。动力学研究表明,吸附过程符合假二阶反应。1%Mg/FNS 吸附剂显示出良好的重复使用性,运行 5 次活性损失率为 5%。因此,这一结果表明,将镁渗入二氧化硅是提高 FNS 氢吸附能力的最有效方法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing hydrogen adsorption through optimized magnesium dispersion on fibrous nano-silica scaffold: Kinetic and thermodynamic studies

Silica material, particularly, fibrous nano-silica (FNS) is one of the potential scaffolds for hydrogen storage, however, low hydrogen adsorption limits its application. To improve its adsorption capacities, the incorporation of active metal, particularly magnesium (Mg), was prepared. FNS with well-developed pore structures and a good surface area were synthesized. Various amounts of Mg (1–5 wt%) were infiltrated into the FNS. To study the effect of metal loading, the adsorbents were characterized by their chemical structure, crystal phase, morphology/elemental composition, and textural properties. Subsequently, hydrogen adsorption studies were conducted where different reaction conditions, including metal loading, catalyst loading, and temperature were studied. Furthermore, kinetic and thermodynamic studies were conducted based on the Langmuir and Van't Hoff models. The results of the characterizations show that the Mg metal was well dispersed into the porous FNS with no significant changes in the original structure. The optimum adsorption of 1.90 wt% was achieved at 1.0 wt% Mg loading, 0.1 g catalyst loading, and 423 K temperature. Kinetic studies demonstrated that the adsorption process fits the pseudo-second-order reaction. The 1%Mg/FNS adsorbents showed good reusability where 5 runs were conducted with <5 % loss in activity. Therefore, this result indicated that infiltration of Mg into the silica is one of the most active approaches in improving the hydrogen adsorption capacities of FNS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
期刊最新文献
Editorial Board Modulating dielectric properties of polyimide composite membranes with hydrophobic mesoporous silica via ball milling processing Bimodal MWCNT-SiO2 mesoporous composites and related silicas with tubular morphology through an easy and fast protocol The effect of solvent type and composition on the synthesis of boron-doped ordered mesoporous carbons A novel zeolite template carbon (ZTC) for pharmaceutical removal in advanced wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1