Bartu Fazla , Oguzhan Erken , Daulet Izbassarov , Francesco Romanò , James B. Grotberg , Metin Muradoglu
{"title":"气道关闭模型中粘液聚合物运动硬化的影响","authors":"Bartu Fazla , Oguzhan Erken , Daulet Izbassarov , Francesco Romanò , James B. Grotberg , Metin Muradoglu","doi":"10.1016/j.jnnfm.2024.105281","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of a liquid plug inside a human airway, known as airway closure, is computationally studied by considering the elastoviscoplastic (EVP) properties of the pulmonary mucus covering the airway walls for a range of liquid film thicknesses and Laplace numbers. The airway is modeled as a rigid tube lined with a single layer of an EVP liquid. The Saramito–Herschel–Bulkley (Saramito-HB) model is coupled with an Isotropic Kinematic Hardening model (Saramito-HB-IKH) to allow energy dissipation at low strain rates. The rheological model is fitted to the experimental data under healthy and cystic fibrosis (CF) conditions. Yielded/unyielded regions and stresses on the airway wall are examined throughout the closure process. Yielding is found to begin near the closure in the Saramito-HB model, whereas it occurs noticeably earlier in the Saramito-HB-IKH model. The kinematic hardening is seen to have a notable effect on the closure time, especially for the CF case, with the effect being more pronounced at low Laplace numbers and initial film thicknesses. Finally, standalone effects of rheological properties on wall stresses are examined considering their physiological values as baseline.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"330 ","pages":"Article 105281"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of kinematic hardening of mucus polymers in an airway closure model\",\"authors\":\"Bartu Fazla , Oguzhan Erken , Daulet Izbassarov , Francesco Romanò , James B. Grotberg , Metin Muradoglu\",\"doi\":\"10.1016/j.jnnfm.2024.105281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The formation of a liquid plug inside a human airway, known as airway closure, is computationally studied by considering the elastoviscoplastic (EVP) properties of the pulmonary mucus covering the airway walls for a range of liquid film thicknesses and Laplace numbers. The airway is modeled as a rigid tube lined with a single layer of an EVP liquid. The Saramito–Herschel–Bulkley (Saramito-HB) model is coupled with an Isotropic Kinematic Hardening model (Saramito-HB-IKH) to allow energy dissipation at low strain rates. The rheological model is fitted to the experimental data under healthy and cystic fibrosis (CF) conditions. Yielded/unyielded regions and stresses on the airway wall are examined throughout the closure process. Yielding is found to begin near the closure in the Saramito-HB model, whereas it occurs noticeably earlier in the Saramito-HB-IKH model. The kinematic hardening is seen to have a notable effect on the closure time, especially for the CF case, with the effect being more pronounced at low Laplace numbers and initial film thicknesses. Finally, standalone effects of rheological properties on wall stresses are examined considering their physiological values as baseline.</p></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"330 \",\"pages\":\"Article 105281\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025724000971\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000971","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Effects of kinematic hardening of mucus polymers in an airway closure model
The formation of a liquid plug inside a human airway, known as airway closure, is computationally studied by considering the elastoviscoplastic (EVP) properties of the pulmonary mucus covering the airway walls for a range of liquid film thicknesses and Laplace numbers. The airway is modeled as a rigid tube lined with a single layer of an EVP liquid. The Saramito–Herschel–Bulkley (Saramito-HB) model is coupled with an Isotropic Kinematic Hardening model (Saramito-HB-IKH) to allow energy dissipation at low strain rates. The rheological model is fitted to the experimental data under healthy and cystic fibrosis (CF) conditions. Yielded/unyielded regions and stresses on the airway wall are examined throughout the closure process. Yielding is found to begin near the closure in the Saramito-HB model, whereas it occurs noticeably earlier in the Saramito-HB-IKH model. The kinematic hardening is seen to have a notable effect on the closure time, especially for the CF case, with the effect being more pronounced at low Laplace numbers and initial film thicknesses. Finally, standalone effects of rheological properties on wall stresses are examined considering their physiological values as baseline.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.