Zetao Zheng , Zhuobin Huang , Nian Zhang , Shiyu Liu , Lingyu Zhao , Xingyi Li , Liu Wang , Fang Xu , Jidong Shi
{"title":"硅烷化辅助覆盖层层压产生的耐拉伸互连器件,用于智能可贴肤电子设备","authors":"Zetao Zheng , Zhuobin Huang , Nian Zhang , Shiyu Liu , Lingyu Zhao , Xingyi Li , Liu Wang , Fang Xu , Jidong Shi","doi":"10.1016/j.mtphys.2024.101494","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible strain sensor arrays hold great promise in on-skin monitoring of human signals and activities. Despite the development of strain-sensitive materials and patterning technologies for improved performance and device integration, the metal film serving as interconnects is always vulnerable upon stretch, which hinders the operation under large strains. Herein, a novel strategy is developed for achieving stretch-tolerant interconnects within a sensor array. Through introducing a high-modulus capping layer for the deposition of Ag interconnects, followed by silanization-assisted lamination onto the stretchable substrate where strain-sensitive graphene patches are inkjet-printed, the deformation of Ag interconnects is largely suppressed upon the global strain of the device, and a high working range of 40 % strain is achieved. Moreover, the chemical bonding between the capping layer and the stretchable substrate ensures a stable contact between the electrode and the sensitive layer under vigorous bending. The as-prepared sensor array demonstrates high sensitivity (gauge factor (GF) > 100) within a wide range (18 %), and could reliably monitor various physiological signals and human activities. A machine learning-assisted wearable gesture recognition system is developed based on the sensor array and a convolutional neural network (CNN), which could distinguish from 10 defined gestures with 100 % accuracy after 14 training processes. The facile and effective strategy could be universally applied for metal interconnects protection under stretch, and dramatically facilitate the design of smart flexible electronics.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stretch-tolerant interconnects derived from silanization-assisted capping layer lamination for smart skin-attachable electronics\",\"authors\":\"Zetao Zheng , Zhuobin Huang , Nian Zhang , Shiyu Liu , Lingyu Zhao , Xingyi Li , Liu Wang , Fang Xu , Jidong Shi\",\"doi\":\"10.1016/j.mtphys.2024.101494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible strain sensor arrays hold great promise in on-skin monitoring of human signals and activities. Despite the development of strain-sensitive materials and patterning technologies for improved performance and device integration, the metal film serving as interconnects is always vulnerable upon stretch, which hinders the operation under large strains. Herein, a novel strategy is developed for achieving stretch-tolerant interconnects within a sensor array. Through introducing a high-modulus capping layer for the deposition of Ag interconnects, followed by silanization-assisted lamination onto the stretchable substrate where strain-sensitive graphene patches are inkjet-printed, the deformation of Ag interconnects is largely suppressed upon the global strain of the device, and a high working range of 40 % strain is achieved. Moreover, the chemical bonding between the capping layer and the stretchable substrate ensures a stable contact between the electrode and the sensitive layer under vigorous bending. The as-prepared sensor array demonstrates high sensitivity (gauge factor (GF) > 100) within a wide range (18 %), and could reliably monitor various physiological signals and human activities. A machine learning-assisted wearable gesture recognition system is developed based on the sensor array and a convolutional neural network (CNN), which could distinguish from 10 defined gestures with 100 % accuracy after 14 training processes. The facile and effective strategy could be universally applied for metal interconnects protection under stretch, and dramatically facilitate the design of smart flexible electronics.</p></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324001706\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001706","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stretch-tolerant interconnects derived from silanization-assisted capping layer lamination for smart skin-attachable electronics
Flexible strain sensor arrays hold great promise in on-skin monitoring of human signals and activities. Despite the development of strain-sensitive materials and patterning technologies for improved performance and device integration, the metal film serving as interconnects is always vulnerable upon stretch, which hinders the operation under large strains. Herein, a novel strategy is developed for achieving stretch-tolerant interconnects within a sensor array. Through introducing a high-modulus capping layer for the deposition of Ag interconnects, followed by silanization-assisted lamination onto the stretchable substrate where strain-sensitive graphene patches are inkjet-printed, the deformation of Ag interconnects is largely suppressed upon the global strain of the device, and a high working range of 40 % strain is achieved. Moreover, the chemical bonding between the capping layer and the stretchable substrate ensures a stable contact between the electrode and the sensitive layer under vigorous bending. The as-prepared sensor array demonstrates high sensitivity (gauge factor (GF) > 100) within a wide range (18 %), and could reliably monitor various physiological signals and human activities. A machine learning-assisted wearable gesture recognition system is developed based on the sensor array and a convolutional neural network (CNN), which could distinguish from 10 defined gestures with 100 % accuracy after 14 training processes. The facile and effective strategy could be universally applied for metal interconnects protection under stretch, and dramatically facilitate the design of smart flexible electronics.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.