{"title":"在高维无模型环境中估计信号水平的零估计器方法","authors":"Ilan Livne, David Azriel, Yair Goldberg","doi":"10.1016/j.jspi.2024.106207","DOIUrl":null,"url":null,"abstract":"<div><p>We study a high-dimensional regression setting under the assumption of known covariate distribution. We aim at estimating the amount of explained variation in the response by the best linear function of the covariates (the signal level). In our setting, neither sparsity of the coefficient vector, nor normality of the covariates or linearity of the conditional expectation are assumed. We present an unbiased and consistent estimator and then improve it by using a zero-estimator approach, where a zero-estimator is a statistic whose expected value is zero. More generally, we present an algorithm based on the zero estimator approach that in principle can improve any given estimator. We study some asymptotic properties of the proposed estimators and demonstrate their finite sample performance in a simulation study.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"234 ","pages":"Article 106207"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A zero-estimator approach for estimating the signal level in a high-dimensional model-free setting\",\"authors\":\"Ilan Livne, David Azriel, Yair Goldberg\",\"doi\":\"10.1016/j.jspi.2024.106207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a high-dimensional regression setting under the assumption of known covariate distribution. We aim at estimating the amount of explained variation in the response by the best linear function of the covariates (the signal level). In our setting, neither sparsity of the coefficient vector, nor normality of the covariates or linearity of the conditional expectation are assumed. We present an unbiased and consistent estimator and then improve it by using a zero-estimator approach, where a zero-estimator is a statistic whose expected value is zero. More generally, we present an algorithm based on the zero estimator approach that in principle can improve any given estimator. We study some asymptotic properties of the proposed estimators and demonstrate their finite sample performance in a simulation study.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"234 \",\"pages\":\"Article 106207\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000648\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000648","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A zero-estimator approach for estimating the signal level in a high-dimensional model-free setting
We study a high-dimensional regression setting under the assumption of known covariate distribution. We aim at estimating the amount of explained variation in the response by the best linear function of the covariates (the signal level). In our setting, neither sparsity of the coefficient vector, nor normality of the covariates or linearity of the conditional expectation are assumed. We present an unbiased and consistent estimator and then improve it by using a zero-estimator approach, where a zero-estimator is a statistic whose expected value is zero. More generally, we present an algorithm based on the zero estimator approach that in principle can improve any given estimator. We study some asymptotic properties of the proposed estimators and demonstrate their finite sample performance in a simulation study.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.