具有周期性材料特性的薄膜/基底双层膜的起皱:对温克勒基础模型的评估

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2024-06-24 DOI:10.1016/j.ijnonlinmec.2024.104815
Yuxin Fu , Yue-Sheng Wang , Yibin Fu
{"title":"具有周期性材料特性的薄膜/基底双层膜的起皱:对温克勒基础模型的评估","authors":"Yuxin Fu ,&nbsp;Yue-Sheng Wang ,&nbsp;Yibin Fu","doi":"10.1016/j.ijnonlinmec.2024.104815","DOIUrl":null,"url":null,"abstract":"<div><p>The Winkler foundation model is often used to analyze the wrinkling of a film/substrate bilayer under compression, and it can be rigorously justified when both the film and substrate are homogeneous and the film is much stiffer than the substrate. We assess the validity of this model when the substrate is still homogeneous but the film has periodic material properties in the direction parallel to the interface. More precisely, we assume that each unit cell is piecewise homogeneous, and each piece can be described by the Euler–Bernoulli beam theory. We provide analytical results for the critical compression when the substrate is viewed as a Winkler foundation with stiffness modeled either approximately (as in some previous studies) or exactly (using the Floquet theory). The analytical results are then compared with those from Abaqus simulations based on the three-dimensional nonlinear elasticity theory in order to assess the validity of the Euler–Bernoulli beam theory and the Winkler foundation model in the current context.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002074622400180X/pdfft?md5=a566bcbc3aca089438f449daa90e5be8&pid=1-s2.0-S002074622400180X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Wrinkling of a film/substrate bilayer with periodic material properties: An assessment of the Winkler foundation model\",\"authors\":\"Yuxin Fu ,&nbsp;Yue-Sheng Wang ,&nbsp;Yibin Fu\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Winkler foundation model is often used to analyze the wrinkling of a film/substrate bilayer under compression, and it can be rigorously justified when both the film and substrate are homogeneous and the film is much stiffer than the substrate. We assess the validity of this model when the substrate is still homogeneous but the film has periodic material properties in the direction parallel to the interface. More precisely, we assume that each unit cell is piecewise homogeneous, and each piece can be described by the Euler–Bernoulli beam theory. We provide analytical results for the critical compression when the substrate is viewed as a Winkler foundation with stiffness modeled either approximately (as in some previous studies) or exactly (using the Floquet theory). The analytical results are then compared with those from Abaqus simulations based on the three-dimensional nonlinear elasticity theory in order to assess the validity of the Euler–Bernoulli beam theory and the Winkler foundation model in the current context.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002074622400180X/pdfft?md5=a566bcbc3aca089438f449daa90e5be8&pid=1-s2.0-S002074622400180X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002074622400180X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074622400180X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

温克勒基础模型常用于分析薄膜/基底双层膜在压缩条件下的起皱现象,当薄膜和基底都是均匀的,且薄膜的刚度远大于基底时,该模型可以得到严格的证明。当基底仍然均匀,但薄膜在平行于界面的方向上具有周期性材料特性时,我们将评估该模型的有效性。更确切地说,我们假设每个单元都是片状均质的,并且每个单元都可以用欧拉-伯努利梁理论来描述。我们提供了将基底视为温克勒地基时临界压缩的分析结果,该地基的刚度可以近似建模(如之前的一些研究)或精确建模(使用 Floquet 理论)。然后将分析结果与基于三维非线性弹性理论的 Abaqus 仿真结果进行比较,以评估欧拉-伯努利梁理论和温克勒地基模型在当前情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wrinkling of a film/substrate bilayer with periodic material properties: An assessment of the Winkler foundation model

The Winkler foundation model is often used to analyze the wrinkling of a film/substrate bilayer under compression, and it can be rigorously justified when both the film and substrate are homogeneous and the film is much stiffer than the substrate. We assess the validity of this model when the substrate is still homogeneous but the film has periodic material properties in the direction parallel to the interface. More precisely, we assume that each unit cell is piecewise homogeneous, and each piece can be described by the Euler–Bernoulli beam theory. We provide analytical results for the critical compression when the substrate is viewed as a Winkler foundation with stiffness modeled either approximately (as in some previous studies) or exactly (using the Floquet theory). The analytical results are then compared with those from Abaqus simulations based on the three-dimensional nonlinear elasticity theory in order to assess the validity of the Euler–Bernoulli beam theory and the Winkler foundation model in the current context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
Cascaded robust fixed-time terminal sliding mode control for uncertain cartpole systems with incremental nonlinear dynamic inversion Study on nonlinear relaxation properties of composite solid propellant Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers Static analysis using flexibility disassembly perturbation for material nonlinear problem with uncertainty Nonparametric identification of multi-degree-of-freedom nonlinear systems from partially measured responses under uncertain dynamic excitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1