Jane L. Earland , James D. Scourse , Tobias Ehmen , Sev Kender , Philippa Ascough
{"title":"确定设得兰近海的斯托雷加事件","authors":"Jane L. Earland , James D. Scourse , Tobias Ehmen , Sev Kender , Philippa Ascough","doi":"10.1016/j.margeo.2024.107334","DOIUrl":null,"url":null,"abstract":"<div><p>The Shetland Islands (UK) are a seminal location for investigating palaeo-tsunami deposits. Onshore evidence suggests three tsunami have occurred during the Holocene: the Storegga tsunami ca. 8150 cal yr BP, the Garth tsunami ca. 5500 cal yr BP and the Dury Voe tsunami ca. 1500 cal yr BP. However, little research has been published on the impact of tsunami on the subtidal shelf where a large amount of North Sea hydrocarbon infrastructure is located. Here, we test the hypothesis that Holocene tsunami impacted shelf sediments, using radiocarbon dating and sedimentological characterization of cores recovered from the Fetlar Basin, offshore east Shetland. The cores contain distinct sand and shell lenses within a Holocene mud sequence, indicating a sudden change in hydrodynamic conditions. Radiocarbon dates bracketing the sand lenses overlap with the published dates for the Storegga event. Dates within the deposit are older (>9 cal. yr BP) which is consistent with reworking and redeposition of earlier sediments. Particle size analysis, ITRAX and MSCL data evidence increases in mean grain size, a reduction in sorting capacity, increased shell concentrations and peaks in associated elements (log(Ca/Fe), log(Ca/Ti) and Sr). These attributes indicate transport of allochthonous material from the inner shelf, and are typical of tsunami backwash-generated submarine debris flows. No evidence was found within the cores for any later Holocene tsunami, which may be due to either bioturbation, active currents, or lack of an initial deposit. The disturbance of sediments, and generation of a submarine debris flow within the Fetlar Basin by the Storegga event highlights the need to assess the potential impact of any future tsunami on planned and existing infrastructure at seabed. Erosion and deposition of allochthonous older marine sediment by the Storegga event also has consequence for interpretation of the coeval 8.2 ka cold event in marine sedimentary records in the tsunami affected region.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"474 ","pages":"Article 107334"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002532272400118X/pdfft?md5=62b32dfbb3a0bdd376af8b7d217a6d3b&pid=1-s2.0-S002532272400118X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Identification of the Storegga event offshore Shetland\",\"authors\":\"Jane L. Earland , James D. Scourse , Tobias Ehmen , Sev Kender , Philippa Ascough\",\"doi\":\"10.1016/j.margeo.2024.107334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Shetland Islands (UK) are a seminal location for investigating palaeo-tsunami deposits. Onshore evidence suggests three tsunami have occurred during the Holocene: the Storegga tsunami ca. 8150 cal yr BP, the Garth tsunami ca. 5500 cal yr BP and the Dury Voe tsunami ca. 1500 cal yr BP. However, little research has been published on the impact of tsunami on the subtidal shelf where a large amount of North Sea hydrocarbon infrastructure is located. Here, we test the hypothesis that Holocene tsunami impacted shelf sediments, using radiocarbon dating and sedimentological characterization of cores recovered from the Fetlar Basin, offshore east Shetland. The cores contain distinct sand and shell lenses within a Holocene mud sequence, indicating a sudden change in hydrodynamic conditions. Radiocarbon dates bracketing the sand lenses overlap with the published dates for the Storegga event. Dates within the deposit are older (>9 cal. yr BP) which is consistent with reworking and redeposition of earlier sediments. Particle size analysis, ITRAX and MSCL data evidence increases in mean grain size, a reduction in sorting capacity, increased shell concentrations and peaks in associated elements (log(Ca/Fe), log(Ca/Ti) and Sr). These attributes indicate transport of allochthonous material from the inner shelf, and are typical of tsunami backwash-generated submarine debris flows. No evidence was found within the cores for any later Holocene tsunami, which may be due to either bioturbation, active currents, or lack of an initial deposit. The disturbance of sediments, and generation of a submarine debris flow within the Fetlar Basin by the Storegga event highlights the need to assess the potential impact of any future tsunami on planned and existing infrastructure at seabed. Erosion and deposition of allochthonous older marine sediment by the Storegga event also has consequence for interpretation of the coeval 8.2 ka cold event in marine sedimentary records in the tsunami affected region.</p></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"474 \",\"pages\":\"Article 107334\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002532272400118X/pdfft?md5=62b32dfbb3a0bdd376af8b7d217a6d3b&pid=1-s2.0-S002532272400118X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002532272400118X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002532272400118X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of the Storegga event offshore Shetland
The Shetland Islands (UK) are a seminal location for investigating palaeo-tsunami deposits. Onshore evidence suggests three tsunami have occurred during the Holocene: the Storegga tsunami ca. 8150 cal yr BP, the Garth tsunami ca. 5500 cal yr BP and the Dury Voe tsunami ca. 1500 cal yr BP. However, little research has been published on the impact of tsunami on the subtidal shelf where a large amount of North Sea hydrocarbon infrastructure is located. Here, we test the hypothesis that Holocene tsunami impacted shelf sediments, using radiocarbon dating and sedimentological characterization of cores recovered from the Fetlar Basin, offshore east Shetland. The cores contain distinct sand and shell lenses within a Holocene mud sequence, indicating a sudden change in hydrodynamic conditions. Radiocarbon dates bracketing the sand lenses overlap with the published dates for the Storegga event. Dates within the deposit are older (>9 cal. yr BP) which is consistent with reworking and redeposition of earlier sediments. Particle size analysis, ITRAX and MSCL data evidence increases in mean grain size, a reduction in sorting capacity, increased shell concentrations and peaks in associated elements (log(Ca/Fe), log(Ca/Ti) and Sr). These attributes indicate transport of allochthonous material from the inner shelf, and are typical of tsunami backwash-generated submarine debris flows. No evidence was found within the cores for any later Holocene tsunami, which may be due to either bioturbation, active currents, or lack of an initial deposit. The disturbance of sediments, and generation of a submarine debris flow within the Fetlar Basin by the Storegga event highlights the need to assess the potential impact of any future tsunami on planned and existing infrastructure at seabed. Erosion and deposition of allochthonous older marine sediment by the Storegga event also has consequence for interpretation of the coeval 8.2 ka cold event in marine sedimentary records in the tsunami affected region.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.