{"title":"基于典型面粉和加工技术的手工抻面质量形成机理揭秘","authors":"Qian Zhang, Zongkuo Li, Yajing Qi, Alkassoumi Hassane Hamadou, Bin Xu","doi":"10.1016/j.jcs.2024.103964","DOIUrl":null,"url":null,"abstract":"<div><p>This study examined the physicochemical properties of flour determining hand-stretched dried noodles (HSDN) and the mechanisms involved. The findings indicated that the flexural performance, cooking and eating quality of HSDN was primarily influenced by gluten characteristics. Additionally, porosity was significantly impacted by the addition of salt, while selecting flour with a higher glutenin to gliadin ratio and lower damaged starch content could potentially reduce the amount of salt required, contributing to the pore structure of HSDN. The HSDN obtained from long-term resting processes demonstrated superior cooking and eating quality in comparison to short-term ones. The extended resting period facilitated the expulsion of trapped air within the dough and the relaxation of the gluten network, resulting in improved dispersal and orientation of excessively aggregated gluten proteins during the stretching process. This led to the formation of more protein branches and stable β-sheet structures during subsequent resting periods.</p></div>","PeriodicalId":15285,"journal":{"name":"Journal of Cereal Science","volume":"118 ","pages":"Article 103964"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the quality formation mechanism of hand-stretched dried noodle based on typical flour and processing technology\",\"authors\":\"Qian Zhang, Zongkuo Li, Yajing Qi, Alkassoumi Hassane Hamadou, Bin Xu\",\"doi\":\"10.1016/j.jcs.2024.103964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examined the physicochemical properties of flour determining hand-stretched dried noodles (HSDN) and the mechanisms involved. The findings indicated that the flexural performance, cooking and eating quality of HSDN was primarily influenced by gluten characteristics. Additionally, porosity was significantly impacted by the addition of salt, while selecting flour with a higher glutenin to gliadin ratio and lower damaged starch content could potentially reduce the amount of salt required, contributing to the pore structure of HSDN. The HSDN obtained from long-term resting processes demonstrated superior cooking and eating quality in comparison to short-term ones. The extended resting period facilitated the expulsion of trapped air within the dough and the relaxation of the gluten network, resulting in improved dispersal and orientation of excessively aggregated gluten proteins during the stretching process. This led to the formation of more protein branches and stable β-sheet structures during subsequent resting periods.</p></div>\",\"PeriodicalId\":15285,\"journal\":{\"name\":\"Journal of Cereal Science\",\"volume\":\"118 \",\"pages\":\"Article 103964\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cereal Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S073352102400122X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cereal Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073352102400122X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Unveiling the quality formation mechanism of hand-stretched dried noodle based on typical flour and processing technology
This study examined the physicochemical properties of flour determining hand-stretched dried noodles (HSDN) and the mechanisms involved. The findings indicated that the flexural performance, cooking and eating quality of HSDN was primarily influenced by gluten characteristics. Additionally, porosity was significantly impacted by the addition of salt, while selecting flour with a higher glutenin to gliadin ratio and lower damaged starch content could potentially reduce the amount of salt required, contributing to the pore structure of HSDN. The HSDN obtained from long-term resting processes demonstrated superior cooking and eating quality in comparison to short-term ones. The extended resting period facilitated the expulsion of trapped air within the dough and the relaxation of the gluten network, resulting in improved dispersal and orientation of excessively aggregated gluten proteins during the stretching process. This led to the formation of more protein branches and stable β-sheet structures during subsequent resting periods.
期刊介绍:
The Journal of Cereal Science was established in 1983 to provide an International forum for the publication of original research papers of high standing covering all aspects of cereal science related to the functional and nutritional quality of cereal grains (true cereals - members of the Poaceae family and starchy pseudocereals - members of the Amaranthaceae, Chenopodiaceae and Polygonaceae families) and their products, in relation to the cereals used. The journal also publishes concise and critical review articles appraising the status and future directions of specific areas of cereal science and short communications that present news of important advances in research. The journal aims at topicality and at providing comprehensive coverage of progress in the field.