Rodrigo C.V. Coelho , José A. Moreira , Duarte M.C. Pedro , Margarida M. Telo da Gama
{"title":"平面上的活性向列-各向同性界面:锚定、有序场和活性的影响","authors":"Rodrigo C.V. Coelho , José A. Moreira , Duarte M.C. Pedro , Margarida M. Telo da Gama","doi":"10.1016/j.giant.2024.100309","DOIUrl":null,"url":null,"abstract":"<div><p>A surface in contact with the isotropic phase of a passive liquid crystal can induce nematic order over distances that range from microscopic to macroscopic when the nematic-isotropic interface undergoes an orientational-wetting transition. If the nematic is active, what happens to the interface? Does it propagate and, if it does, is its structure different from the passive one? In this paper, we address these questions. We investigate how the active nematic-isotropic interface is affected by the anchoring strength of the surface, the bulk ordering field and the activity. We find that while passive interfaces are one-dimensional the active ones exhibit two dynamical regimes: a passive-like regime and a propagating regime where the interfaces propagate until the entire domain is active nematic. Active interfaces break the translational symmetry within the interfacial plane above a threshold activity, where the active nematic fluctuations, which are ultimately responsible for the emergence of an active turbulent nematic phase, drive non-steady dynamical interfacial regimes.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100309"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000730/pdfft?md5=ce506cdb9d08a2eba4a7bbafb827fe63&pid=1-s2.0-S2666542524000730-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Active nematic-isotropic interfaces on flat surfaces: Effects of anchoring, ordering field and activity\",\"authors\":\"Rodrigo C.V. Coelho , José A. Moreira , Duarte M.C. Pedro , Margarida M. Telo da Gama\",\"doi\":\"10.1016/j.giant.2024.100309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A surface in contact with the isotropic phase of a passive liquid crystal can induce nematic order over distances that range from microscopic to macroscopic when the nematic-isotropic interface undergoes an orientational-wetting transition. If the nematic is active, what happens to the interface? Does it propagate and, if it does, is its structure different from the passive one? In this paper, we address these questions. We investigate how the active nematic-isotropic interface is affected by the anchoring strength of the surface, the bulk ordering field and the activity. We find that while passive interfaces are one-dimensional the active ones exhibit two dynamical regimes: a passive-like regime and a propagating regime where the interfaces propagate until the entire domain is active nematic. Active interfaces break the translational symmetry within the interfacial plane above a threshold activity, where the active nematic fluctuations, which are ultimately responsible for the emergence of an active turbulent nematic phase, drive non-steady dynamical interfacial regimes.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"19 \",\"pages\":\"Article 100309\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000730/pdfft?md5=ce506cdb9d08a2eba4a7bbafb827fe63&pid=1-s2.0-S2666542524000730-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000730\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000730","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Active nematic-isotropic interfaces on flat surfaces: Effects of anchoring, ordering field and activity
A surface in contact with the isotropic phase of a passive liquid crystal can induce nematic order over distances that range from microscopic to macroscopic when the nematic-isotropic interface undergoes an orientational-wetting transition. If the nematic is active, what happens to the interface? Does it propagate and, if it does, is its structure different from the passive one? In this paper, we address these questions. We investigate how the active nematic-isotropic interface is affected by the anchoring strength of the surface, the bulk ordering field and the activity. We find that while passive interfaces are one-dimensional the active ones exhibit two dynamical regimes: a passive-like regime and a propagating regime where the interfaces propagate until the entire domain is active nematic. Active interfaces break the translational symmetry within the interfacial plane above a threshold activity, where the active nematic fluctuations, which are ultimately responsible for the emergence of an active turbulent nematic phase, drive non-steady dynamical interfacial regimes.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.