用于食品储存的免电池灵活无线温度传感器

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL FlatChem Pub Date : 2024-06-29 DOI:10.1016/j.flatc.2024.100709
Zhengzhong Wan , Xujun Chen , Danyao Song , Zihao Wu , Ruihua Zhang , Meng Wang , Xinqing Xiao
{"title":"用于食品储存的免电池灵活无线温度传感器","authors":"Zhengzhong Wan ,&nbsp;Xujun Chen ,&nbsp;Danyao Song ,&nbsp;Zihao Wu ,&nbsp;Ruihua Zhang ,&nbsp;Meng Wang ,&nbsp;Xinqing Xiao","doi":"10.1016/j.flatc.2024.100709","DOIUrl":null,"url":null,"abstract":"<div><p>The method of monitoring food temperature during food storage needs to be improved to continuously and accurately perceive the temperature of the food in the package to ensure the quality and safety of the food during storage. This paper proposes and develops a battery-free flexible wireless temperature sensing system (BFTS) for food storage. The BFTS consists of a battery-free flexible wireless temperature sensing tag (BFTT), a wireless reader, and a personal computer (PC). The BFTT developed in this paper has good flexibility and can be placed inside the food package to realize the continuous monitoring of temperature changes. The flexible circuits of the BFTT were fabricated by laser engraving laser-induced graphene (LIG) −copper (Cu) plating film made with Cu plating on LIG. The LIG-Cu plating film has good thickness uniformity, electrical conductivity, and laser engraving processability. The antenna of BFTT has good performance. The wireless reader is connected to the PC using a data line, and the BFTT communicates wirelessly with the wireless reader using ultra-high frequency (UHF) radio frequency identification (RFID). The BFTT was realized by the wireless radio frequency (RF) as the supply power from the wireless reader. The BFTS could realize the temperature monitoring of food stored at 0℃ and −18℃, and it has the advantages of low cost, simple manufacturing process, and low energy consumption, which could be used to continuously and accurately monitor the inside temperature of the food packages. Overall, the LIG-Cu plating film developed in this paper could be used in the fabrication of flexible circuits, and the temperature monitoring inside food packages realized by the BFTS has potential applications in actual food storage.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Battery-free flexible wireless temperature sensing for food storage\",\"authors\":\"Zhengzhong Wan ,&nbsp;Xujun Chen ,&nbsp;Danyao Song ,&nbsp;Zihao Wu ,&nbsp;Ruihua Zhang ,&nbsp;Meng Wang ,&nbsp;Xinqing Xiao\",\"doi\":\"10.1016/j.flatc.2024.100709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The method of monitoring food temperature during food storage needs to be improved to continuously and accurately perceive the temperature of the food in the package to ensure the quality and safety of the food during storage. This paper proposes and develops a battery-free flexible wireless temperature sensing system (BFTS) for food storage. The BFTS consists of a battery-free flexible wireless temperature sensing tag (BFTT), a wireless reader, and a personal computer (PC). The BFTT developed in this paper has good flexibility and can be placed inside the food package to realize the continuous monitoring of temperature changes. The flexible circuits of the BFTT were fabricated by laser engraving laser-induced graphene (LIG) −copper (Cu) plating film made with Cu plating on LIG. The LIG-Cu plating film has good thickness uniformity, electrical conductivity, and laser engraving processability. The antenna of BFTT has good performance. The wireless reader is connected to the PC using a data line, and the BFTT communicates wirelessly with the wireless reader using ultra-high frequency (UHF) radio frequency identification (RFID). The BFTT was realized by the wireless radio frequency (RF) as the supply power from the wireless reader. The BFTS could realize the temperature monitoring of food stored at 0℃ and −18℃, and it has the advantages of low cost, simple manufacturing process, and low energy consumption, which could be used to continuously and accurately monitor the inside temperature of the food packages. Overall, the LIG-Cu plating film developed in this paper could be used in the fabrication of flexible circuits, and the temperature monitoring inside food packages realized by the BFTS has potential applications in actual food storage.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245226272400103X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245226272400103X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

食品储存过程中的温度监测方法亟待改进,以便持续、准确地感知包装中食品的温度,确保食品在储存过程中的质量和安全。本文提出并开发了一种用于食品储存的无电池柔性无线温度传感系统(BFTS)。该系统由一个免电池柔性无线温度传感标签(BFTT)、一个无线读取器和一台个人电脑(PC)组成。本文开发的 BFTT 具有良好的柔性,可以放置在食品包装内部,实现对温度变化的连续监测。BFTT 的柔性电路是通过激光雕刻激光诱导石墨烯(LIG)-铜(Cu)电镀膜制成的。LIG-Cu 电镀膜具有良好的厚度均匀性、导电性和激光雕刻加工性。BFTT 的天线性能良好。无线读取器通过数据线与电脑连接,BFTT 利用超高频(UHF)射频识别(RFID)技术与无线读取器进行无线通信。BFTT 通过无线射频(RF)作为无线阅读器的供电电源来实现。BFTS 可实现对 0℃ 和 -18℃ 食品储存温度的监测,具有成本低、制造工艺简单、能耗低等优点,可用于连续、准确地监测食品包装内部温度。总之,本文开发的 LIG-Cu 电镀膜可用于柔性电路的制造,而 BFTS 实现的食品包装内部温度监测在实际食品储存中也有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Battery-free flexible wireless temperature sensing for food storage

The method of monitoring food temperature during food storage needs to be improved to continuously and accurately perceive the temperature of the food in the package to ensure the quality and safety of the food during storage. This paper proposes and develops a battery-free flexible wireless temperature sensing system (BFTS) for food storage. The BFTS consists of a battery-free flexible wireless temperature sensing tag (BFTT), a wireless reader, and a personal computer (PC). The BFTT developed in this paper has good flexibility and can be placed inside the food package to realize the continuous monitoring of temperature changes. The flexible circuits of the BFTT were fabricated by laser engraving laser-induced graphene (LIG) −copper (Cu) plating film made with Cu plating on LIG. The LIG-Cu plating film has good thickness uniformity, electrical conductivity, and laser engraving processability. The antenna of BFTT has good performance. The wireless reader is connected to the PC using a data line, and the BFTT communicates wirelessly with the wireless reader using ultra-high frequency (UHF) radio frequency identification (RFID). The BFTT was realized by the wireless radio frequency (RF) as the supply power from the wireless reader. The BFTS could realize the temperature monitoring of food stored at 0℃ and −18℃, and it has the advantages of low cost, simple manufacturing process, and low energy consumption, which could be used to continuously and accurately monitor the inside temperature of the food packages. Overall, the LIG-Cu plating film developed in this paper could be used in the fabrication of flexible circuits, and the temperature monitoring inside food packages realized by the BFTS has potential applications in actual food storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
期刊最新文献
Battery-free flexible wireless temperature sensing for food storage Simultaneous engineering of the conductivity and work function of biphenylene via fluorine adsorption Optimizing doping thresholds for enhanced scintillation in 2D hybrid organic–inorganic perovskites Selective mass transport mediated by two-dimensional confined water: A comprehensive review Forming more and sharper sensing protrusions on graphene-based electrodes through annealing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1