Zhengzhong Wan , Xujun Chen , Danyao Song , Zihao Wu , Ruihua Zhang , Meng Wang , Xinqing Xiao
{"title":"用于食品储存的免电池灵活无线温度传感器","authors":"Zhengzhong Wan , Xujun Chen , Danyao Song , Zihao Wu , Ruihua Zhang , Meng Wang , Xinqing Xiao","doi":"10.1016/j.flatc.2024.100709","DOIUrl":null,"url":null,"abstract":"<div><p>The method of monitoring food temperature during food storage needs to be improved to continuously and accurately perceive the temperature of the food in the package to ensure the quality and safety of the food during storage. This paper proposes and develops a battery-free flexible wireless temperature sensing system (BFTS) for food storage. The BFTS consists of a battery-free flexible wireless temperature sensing tag (BFTT), a wireless reader, and a personal computer (PC). The BFTT developed in this paper has good flexibility and can be placed inside the food package to realize the continuous monitoring of temperature changes. The flexible circuits of the BFTT were fabricated by laser engraving laser-induced graphene (LIG) −copper (Cu) plating film made with Cu plating on LIG. The LIG-Cu plating film has good thickness uniformity, electrical conductivity, and laser engraving processability. The antenna of BFTT has good performance. The wireless reader is connected to the PC using a data line, and the BFTT communicates wirelessly with the wireless reader using ultra-high frequency (UHF) radio frequency identification (RFID). The BFTT was realized by the wireless radio frequency (RF) as the supply power from the wireless reader. The BFTS could realize the temperature monitoring of food stored at 0℃ and −18℃, and it has the advantages of low cost, simple manufacturing process, and low energy consumption, which could be used to continuously and accurately monitor the inside temperature of the food packages. Overall, the LIG-Cu plating film developed in this paper could be used in the fabrication of flexible circuits, and the temperature monitoring inside food packages realized by the BFTS has potential applications in actual food storage.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100709"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Battery-free flexible wireless temperature sensing for food storage\",\"authors\":\"Zhengzhong Wan , Xujun Chen , Danyao Song , Zihao Wu , Ruihua Zhang , Meng Wang , Xinqing Xiao\",\"doi\":\"10.1016/j.flatc.2024.100709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The method of monitoring food temperature during food storage needs to be improved to continuously and accurately perceive the temperature of the food in the package to ensure the quality and safety of the food during storage. This paper proposes and develops a battery-free flexible wireless temperature sensing system (BFTS) for food storage. The BFTS consists of a battery-free flexible wireless temperature sensing tag (BFTT), a wireless reader, and a personal computer (PC). The BFTT developed in this paper has good flexibility and can be placed inside the food package to realize the continuous monitoring of temperature changes. The flexible circuits of the BFTT were fabricated by laser engraving laser-induced graphene (LIG) −copper (Cu) plating film made with Cu plating on LIG. The LIG-Cu plating film has good thickness uniformity, electrical conductivity, and laser engraving processability. The antenna of BFTT has good performance. The wireless reader is connected to the PC using a data line, and the BFTT communicates wirelessly with the wireless reader using ultra-high frequency (UHF) radio frequency identification (RFID). The BFTT was realized by the wireless radio frequency (RF) as the supply power from the wireless reader. The BFTS could realize the temperature monitoring of food stored at 0℃ and −18℃, and it has the advantages of low cost, simple manufacturing process, and low energy consumption, which could be used to continuously and accurately monitor the inside temperature of the food packages. Overall, the LIG-Cu plating film developed in this paper could be used in the fabrication of flexible circuits, and the temperature monitoring inside food packages realized by the BFTS has potential applications in actual food storage.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"47 \",\"pages\":\"Article 100709\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245226272400103X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245226272400103X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Battery-free flexible wireless temperature sensing for food storage
The method of monitoring food temperature during food storage needs to be improved to continuously and accurately perceive the temperature of the food in the package to ensure the quality and safety of the food during storage. This paper proposes and develops a battery-free flexible wireless temperature sensing system (BFTS) for food storage. The BFTS consists of a battery-free flexible wireless temperature sensing tag (BFTT), a wireless reader, and a personal computer (PC). The BFTT developed in this paper has good flexibility and can be placed inside the food package to realize the continuous monitoring of temperature changes. The flexible circuits of the BFTT were fabricated by laser engraving laser-induced graphene (LIG) −copper (Cu) plating film made with Cu plating on LIG. The LIG-Cu plating film has good thickness uniformity, electrical conductivity, and laser engraving processability. The antenna of BFTT has good performance. The wireless reader is connected to the PC using a data line, and the BFTT communicates wirelessly with the wireless reader using ultra-high frequency (UHF) radio frequency identification (RFID). The BFTT was realized by the wireless radio frequency (RF) as the supply power from the wireless reader. The BFTS could realize the temperature monitoring of food stored at 0℃ and −18℃, and it has the advantages of low cost, simple manufacturing process, and low energy consumption, which could be used to continuously and accurately monitor the inside temperature of the food packages. Overall, the LIG-Cu plating film developed in this paper could be used in the fabrication of flexible circuits, and the temperature monitoring inside food packages realized by the BFTS has potential applications in actual food storage.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)