加速电力系统的优化调度预测:多元 GAN 辅助预测框架

IF 9 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2024-06-19 DOI:10.1016/j.renene.2024.120830
Ali Peivand, Ehsan Azad Farsani, Hamid Reza Abdolmohammadi
{"title":"加速电力系统的优化调度预测:多元 GAN 辅助预测框架","authors":"Ali Peivand,&nbsp;Ehsan Azad Farsani,&nbsp;Hamid Reza Abdolmohammadi","doi":"10.1016/j.renene.2024.120830","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a comprehensive framework aimed at enhancing power system optimality through a two-stage optimization process and the development of a deep-based model for optimal scheduling prediction (OSP). Initially, a Bidirectional Long Short-term Memory (Bi-LSTM) architecture is employed to accurately forecast wind power in the first stage. Subsequently, a convolutional Generative Adversarial Network (GAN) model utilizes these predicted wind power values to generate synthetic scenarios. These scenarios, based on the preceding 10 days’ wind power predictions, serve as inputs for the subsequent power system optimization stage. To streamline computational efficiency, the power system optimization is conducted via a two-stage model. The outputs from this process, alongside other pertinent parameters, are utilized to train the proposed deep-based OSP model. The efficacy of the proposed model in rapidly and reliably predicting optimal scheduling is evaluated using the 118-bus power system. Results indicate that the innovative approach demonstrates exceptional speed and precision in determining optimal scheduling for the power system. Specifically, the proposed OSP model accurately forecasts optimal dispatch for ten days ahead in a mere 0.38 s, with an error rate below 0.001. Furthermore, the model exhibits a 92 % correlation in predicting optimal dispatched wind power. Sensitivity analysis highlights that optimizing the arrangement of the proposed deep-based model using an automatic hyperparameter optimization software framework (OPTUNA) can significantly enhance performance accuracy, potentially by up to 24 %.</p></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating optimal scheduling prediction in power system: A multi-faceted GAN-assisted prediction framework\",\"authors\":\"Ali Peivand,&nbsp;Ehsan Azad Farsani,&nbsp;Hamid Reza Abdolmohammadi\",\"doi\":\"10.1016/j.renene.2024.120830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces a comprehensive framework aimed at enhancing power system optimality through a two-stage optimization process and the development of a deep-based model for optimal scheduling prediction (OSP). Initially, a Bidirectional Long Short-term Memory (Bi-LSTM) architecture is employed to accurately forecast wind power in the first stage. Subsequently, a convolutional Generative Adversarial Network (GAN) model utilizes these predicted wind power values to generate synthetic scenarios. These scenarios, based on the preceding 10 days’ wind power predictions, serve as inputs for the subsequent power system optimization stage. To streamline computational efficiency, the power system optimization is conducted via a two-stage model. The outputs from this process, alongside other pertinent parameters, are utilized to train the proposed deep-based OSP model. The efficacy of the proposed model in rapidly and reliably predicting optimal scheduling is evaluated using the 118-bus power system. Results indicate that the innovative approach demonstrates exceptional speed and precision in determining optimal scheduling for the power system. Specifically, the proposed OSP model accurately forecasts optimal dispatch for ten days ahead in a mere 0.38 s, with an error rate below 0.001. Furthermore, the model exhibits a 92 % correlation in predicting optimal dispatched wind power. Sensitivity analysis highlights that optimizing the arrangement of the proposed deep-based model using an automatic hyperparameter optimization software framework (OPTUNA) can significantly enhance performance accuracy, potentially by up to 24 %.</p></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096014812400898X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096014812400898X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一个综合框架,旨在通过两阶段优化过程和开发基于深度的优化调度预测(OSP)模型来提高电力系统的优化性。首先,在第一阶段采用双向长短期记忆(Bi-LSTM)架构来准确预测风力发电量。随后,卷积生成对抗网络(GAN)模型利用这些预测的风力值生成合成场景。这些场景基于前 10 天的风力预测值,可作为后续电力系统优化阶段的输入。为了简化计算效率,电力系统的优化通过两阶段模型进行。这一过程的输出结果与其他相关参数一起,用于训练所提出的基于深度的 OSP 模型。利用 118 总线电力系统评估了所提模型在快速、可靠地预测优化调度方面的功效。结果表明,这种创新方法在确定电力系统最优调度方面表现出了卓越的速度和精度。具体而言,拟议的 OSP 模型仅用 0.38 秒就能准确预测未来十天的最佳调度,误差率低于 0.001。此外,该模型在预测最佳风电调度方面的相关性高达 92%。敏感性分析表明,使用自动超参数优化软件框架(OPTUNA)优化所提出的基于深度的模型的布置,可显著提高性能精度,最高可达 24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating optimal scheduling prediction in power system: A multi-faceted GAN-assisted prediction framework

This study introduces a comprehensive framework aimed at enhancing power system optimality through a two-stage optimization process and the development of a deep-based model for optimal scheduling prediction (OSP). Initially, a Bidirectional Long Short-term Memory (Bi-LSTM) architecture is employed to accurately forecast wind power in the first stage. Subsequently, a convolutional Generative Adversarial Network (GAN) model utilizes these predicted wind power values to generate synthetic scenarios. These scenarios, based on the preceding 10 days’ wind power predictions, serve as inputs for the subsequent power system optimization stage. To streamline computational efficiency, the power system optimization is conducted via a two-stage model. The outputs from this process, alongside other pertinent parameters, are utilized to train the proposed deep-based OSP model. The efficacy of the proposed model in rapidly and reliably predicting optimal scheduling is evaluated using the 118-bus power system. Results indicate that the innovative approach demonstrates exceptional speed and precision in determining optimal scheduling for the power system. Specifically, the proposed OSP model accurately forecasts optimal dispatch for ten days ahead in a mere 0.38 s, with an error rate below 0.001. Furthermore, the model exhibits a 92 % correlation in predicting optimal dispatched wind power. Sensitivity analysis highlights that optimizing the arrangement of the proposed deep-based model using an automatic hyperparameter optimization software framework (OPTUNA) can significantly enhance performance accuracy, potentially by up to 24 %.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Influence of temperature dependent short-term storage on thermal runaway characteristics in lithium-ion batteries Energetic and exergoeconomic analysis of different configurations of power and hydrogen generation systems using solar based organic Rankine cycle and PEM electrolyzer A multi-parameter estimation of layered rock-soil thermal properties of borehole heat exchanger in a stratified subsurface Effect of the intermittency of non-conventional renewable energy sources on the volatility of the Colombian spot price H2S mitigation for biogas upgrading in a full-scale anaerobic digestion process by using artificial neural network modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1