{"title":"作为治疗阿尔茨海默病的白细胞介素-6 和乙酰胆碱酯酶抑制剂的色酮杂交化合物:设计、对接、合成和评估","authors":"Shivam Mishra, Sukhvir Kaur, Gulshan Bansal, Yogita Bansal","doi":"10.1016/j.ejmcr.2024.100180","DOIUrl":null,"url":null,"abstract":"<div><p>The course of Alzheimer's disease (AD) is largely influenced by interleukin-6 (IL-6) and acetylcholinesterase (AChE). Therefore, concurrent suppression of these two targets is a rational approach for the development of anti-AD molecules. The study is aimed to design a molecule with pharmacophore capable of inhibiting both the targets. Four series are designed by coupling a chromone moiety (a pharmacophore that inhibits IL-6) with a N,N-disubstituted amine (that inhibits AChE) through a linker (1–4 carbon chain). The <em>in silico</em> studies on the designed compounds led to the identification of 16 best-fit compounds having good oral bioavailability and blood brain barrier permeability. All 16 compounds were synthesized and evaluated for anti-AChE activity. Six compounds showing >45 % inhibition of AChE at 1 μM concentration are further evaluated for BuChE (butyrylcholinesterase) and IL-6 inhibitory activities. Compound YS3g is the most potent inhibitor of <em>Ee</em>AChE (IC<sub>50</sub> = 0.45 μM) and of IL-6 (IC<sub>50</sub> = 0.46 μM). Subsequently, it is found to show dose-dependent effects in STZ (streptozotocin)-induced memory deficit model at three doses (0.2, 0.4 and 0.8 mg/kg). At higher dose (0.8 mg/kg), it reverses the deficit as also supported by histopathological studies. The findings reveal that a chromone nucleus coupled with a piperazine via a three-carbon linker may be a useful template for developing novel moieties against AD.</p></div>","PeriodicalId":12015,"journal":{"name":"European Journal of Medicinal Chemistry Reports","volume":"12 ","pages":"Article 100180"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772417424000529/pdfft?md5=aba3c43ff2e3c43ceeb763d9dc7b1dcb&pid=1-s2.0-S2772417424000529-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chromone hybrids as interleukin-6 and acetylcholinesterase inhibitor for treatment of Alzheimer's disease: Design, docking, synthesis and evaluation\",\"authors\":\"Shivam Mishra, Sukhvir Kaur, Gulshan Bansal, Yogita Bansal\",\"doi\":\"10.1016/j.ejmcr.2024.100180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The course of Alzheimer's disease (AD) is largely influenced by interleukin-6 (IL-6) and acetylcholinesterase (AChE). Therefore, concurrent suppression of these two targets is a rational approach for the development of anti-AD molecules. The study is aimed to design a molecule with pharmacophore capable of inhibiting both the targets. Four series are designed by coupling a chromone moiety (a pharmacophore that inhibits IL-6) with a N,N-disubstituted amine (that inhibits AChE) through a linker (1–4 carbon chain). The <em>in silico</em> studies on the designed compounds led to the identification of 16 best-fit compounds having good oral bioavailability and blood brain barrier permeability. All 16 compounds were synthesized and evaluated for anti-AChE activity. Six compounds showing >45 % inhibition of AChE at 1 μM concentration are further evaluated for BuChE (butyrylcholinesterase) and IL-6 inhibitory activities. Compound YS3g is the most potent inhibitor of <em>Ee</em>AChE (IC<sub>50</sub> = 0.45 μM) and of IL-6 (IC<sub>50</sub> = 0.46 μM). Subsequently, it is found to show dose-dependent effects in STZ (streptozotocin)-induced memory deficit model at three doses (0.2, 0.4 and 0.8 mg/kg). At higher dose (0.8 mg/kg), it reverses the deficit as also supported by histopathological studies. The findings reveal that a chromone nucleus coupled with a piperazine via a three-carbon linker may be a useful template for developing novel moieties against AD.</p></div>\",\"PeriodicalId\":12015,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry Reports\",\"volume\":\"12 \",\"pages\":\"Article 100180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772417424000529/pdfft?md5=aba3c43ff2e3c43ceeb763d9dc7b1dcb&pid=1-s2.0-S2772417424000529-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772417424000529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772417424000529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chromone hybrids as interleukin-6 and acetylcholinesterase inhibitor for treatment of Alzheimer's disease: Design, docking, synthesis and evaluation
The course of Alzheimer's disease (AD) is largely influenced by interleukin-6 (IL-6) and acetylcholinesterase (AChE). Therefore, concurrent suppression of these two targets is a rational approach for the development of anti-AD molecules. The study is aimed to design a molecule with pharmacophore capable of inhibiting both the targets. Four series are designed by coupling a chromone moiety (a pharmacophore that inhibits IL-6) with a N,N-disubstituted amine (that inhibits AChE) through a linker (1–4 carbon chain). The in silico studies on the designed compounds led to the identification of 16 best-fit compounds having good oral bioavailability and blood brain barrier permeability. All 16 compounds were synthesized and evaluated for anti-AChE activity. Six compounds showing >45 % inhibition of AChE at 1 μM concentration are further evaluated for BuChE (butyrylcholinesterase) and IL-6 inhibitory activities. Compound YS3g is the most potent inhibitor of EeAChE (IC50 = 0.45 μM) and of IL-6 (IC50 = 0.46 μM). Subsequently, it is found to show dose-dependent effects in STZ (streptozotocin)-induced memory deficit model at three doses (0.2, 0.4 and 0.8 mg/kg). At higher dose (0.8 mg/kg), it reverses the deficit as also supported by histopathological studies. The findings reveal that a chromone nucleus coupled with a piperazine via a three-carbon linker may be a useful template for developing novel moieties against AD.