基于强化学习的多能源系统安全低碳优化调度策略

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS Sustainable Energy Grids & Networks Pub Date : 2024-06-20 DOI:10.1016/j.segan.2024.101454
Fu Jiang , Jie Chen , Jieqi Rong , Weirong Liu , Heng Li , Hui Peng
{"title":"基于强化学习的多能源系统安全低碳优化调度策略","authors":"Fu Jiang ,&nbsp;Jie Chen ,&nbsp;Jieqi Rong ,&nbsp;Weirong Liu ,&nbsp;Heng Li ,&nbsp;Hui Peng","doi":"10.1016/j.segan.2024.101454","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-energy system with distributed energy resources has become the inevitable trend in recent years due to their potential for creating the efficient and sustainable energy infrastructure, with a strong ability on carbon emission reduction. To accommodate the uncertainties of renewable energy generation and energy demand, model-free deep reinforcement learning methods are emerging for energy management in multi-energy system. However, traditional reinforcement learning methods still have operation safety issue of violating the physical constraints of multi-energy system. To address the challenges, a low-carbon scheduling strategy based on safe soft actor-critic algorithm is proposed in this paper. Firstly, an electricity-thermal-carbon joint scheduling framework is constructed, where carbon trading mechanism is incorporated to further motivate carbon emission reductions. Secondly, the energy cost and carbon trading cost are simultaneously integrated in the objective function, and the dynamic optimization problem of multi-energy system is modeled as a constrained Markov decision process by taking into account the diverse uncertainties. Then, a novel safe soft actor-critic method is proposed to achieve the benefits of economic and carbon emissions, where the security networks and Lagrangian relaxation are introduced to deal with operation constraints. The case study validates that the proposed scheduling strategy can reduce the energy cost and carbon trading cost by up to 26.24% and 33.73% within constraints, compared with existing methods.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe reinforcement learning based optimal low-carbon scheduling strategy for multi-energy system\",\"authors\":\"Fu Jiang ,&nbsp;Jie Chen ,&nbsp;Jieqi Rong ,&nbsp;Weirong Liu ,&nbsp;Heng Li ,&nbsp;Hui Peng\",\"doi\":\"10.1016/j.segan.2024.101454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-energy system with distributed energy resources has become the inevitable trend in recent years due to their potential for creating the efficient and sustainable energy infrastructure, with a strong ability on carbon emission reduction. To accommodate the uncertainties of renewable energy generation and energy demand, model-free deep reinforcement learning methods are emerging for energy management in multi-energy system. However, traditional reinforcement learning methods still have operation safety issue of violating the physical constraints of multi-energy system. To address the challenges, a low-carbon scheduling strategy based on safe soft actor-critic algorithm is proposed in this paper. Firstly, an electricity-thermal-carbon joint scheduling framework is constructed, where carbon trading mechanism is incorporated to further motivate carbon emission reductions. Secondly, the energy cost and carbon trading cost are simultaneously integrated in the objective function, and the dynamic optimization problem of multi-energy system is modeled as a constrained Markov decision process by taking into account the diverse uncertainties. Then, a novel safe soft actor-critic method is proposed to achieve the benefits of economic and carbon emissions, where the security networks and Lagrangian relaxation are introduced to deal with operation constraints. The case study validates that the proposed scheduling strategy can reduce the energy cost and carbon trading cost by up to 26.24% and 33.73% within constraints, compared with existing methods.</p></div>\",\"PeriodicalId\":56142,\"journal\":{\"name\":\"Sustainable Energy Grids & Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Grids & Networks\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352467724001838\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724001838","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,分布式能源资源的多能源系统已成为必然趋势,因为它们具有创建高效和可持续能源基础设施的潜力,并具有很强的碳减排能力。为了适应可再生能源发电和能源需求的不确定性,无模型深度强化学习方法在多能源系统的能源管理中逐渐兴起。然而,传统的强化学习方法仍然存在违反多能源系统物理约束的运行安全问题。为解决这一难题,本文提出了一种基于安全软行为批判算法的低碳调度策略。首先,构建了电-热-碳联合调度框架,并在此框架中加入了碳交易机制,以进一步激励碳减排。其次,将能源成本和碳交易成本同时纳入目标函数,并考虑到多种不确定性,将多能源系统的动态优化问题建模为一个有约束的马尔可夫决策过程。然后,引入安全网络和拉格朗日松弛来处理运行约束,提出了一种新型的安全软行为批判方法,以实现经济效益和碳排放效益。案例研究证实,与现有方法相比,所提出的调度策略可在约束条件下将能源成本和碳交易成本分别降低 26.24% 和 33.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safe reinforcement learning based optimal low-carbon scheduling strategy for multi-energy system

Multi-energy system with distributed energy resources has become the inevitable trend in recent years due to their potential for creating the efficient and sustainable energy infrastructure, with a strong ability on carbon emission reduction. To accommodate the uncertainties of renewable energy generation and energy demand, model-free deep reinforcement learning methods are emerging for energy management in multi-energy system. However, traditional reinforcement learning methods still have operation safety issue of violating the physical constraints of multi-energy system. To address the challenges, a low-carbon scheduling strategy based on safe soft actor-critic algorithm is proposed in this paper. Firstly, an electricity-thermal-carbon joint scheduling framework is constructed, where carbon trading mechanism is incorporated to further motivate carbon emission reductions. Secondly, the energy cost and carbon trading cost are simultaneously integrated in the objective function, and the dynamic optimization problem of multi-energy system is modeled as a constrained Markov decision process by taking into account the diverse uncertainties. Then, a novel safe soft actor-critic method is proposed to achieve the benefits of economic and carbon emissions, where the security networks and Lagrangian relaxation are introduced to deal with operation constraints. The case study validates that the proposed scheduling strategy can reduce the energy cost and carbon trading cost by up to 26.24% and 33.73% within constraints, compared with existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
期刊最新文献
Secured energy data transaction for prosumers under diverse cyberattack scenarios Investigating the long-term benefits of EU electricity highways: The case of the Green Aegean Interconnector Blockchain-enabled transformation: Decentralized planning and secure peer-to-peer trading in local energy networks Integrated real-time dispatch of power and gas systems Two-stage low-carbon economic dispatch of an integrated energy system considering flexible decoupling of electricity and heat on sides of source and load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1