过渡金属盐催化介孔二氧化硅纳米颗粒的绿色合成

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED Microporous and Mesoporous Materials Pub Date : 2024-06-26 DOI:10.1016/j.micromeso.2024.113233
Assel Amirzhanova , Najeeb Ullah , Ömer Dag
{"title":"过渡金属盐催化介孔二氧化硅纳米颗粒的绿色合成","authors":"Assel Amirzhanova ,&nbsp;Najeeb Ullah ,&nbsp;Ömer Dag","doi":"10.1016/j.micromeso.2024.113233","DOIUrl":null,"url":null,"abstract":"<div><p>Conventionally, mesoporous silica nanoparticles are prepared by catalysing silicon alkoxides using acids or bases and are highly important in storage, delivery, and catalysis. Here, for the first time, we demonstrate that a transition metal ion (such as Ni(II), Co(II), and Mn(II)) also catalyses the hydrolysis and condensation reactions of silicon alkoxides in aqueous media without any additional acid or base to synthesize mesostructured and micro/mesostructured silica nanoparticles. An aqueous solution of a transition metal salt (specifically, nitrate salts of Ni(II), Co(II), or Mn(II), or chloride and sulphate salts of Ni(II)), 10-Lauryl ether (C<sub>12</sub>H<sub>25</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>10</sub>OH, C<sub>12</sub>E<sub>10</sub>) and cetyltrimethylammonium bromide (C<sub>16</sub>H<sub>33</sub>N(CH<sub>3</sub>)<sub>3</sub>Br, CTAB), and tetramethyl orthosilicate (TMOS) undergoes a precipitation reaction at room temperature, yielding ultra-small ordered mesostructured silica nanoparticles. These nanoparticles are subsequently calcined to produce mesoporous silica (<em>meso</em>-SiO<sub>2</sub>) with a high surface area (680–871 m<sup>2</sup>/g), large pore-volume (2.2–3.71 cm<sup>3</sup>/g), and small pore-size (1.2–3.0 nm). Moreover, the counter anions of the salts play an important role in the assembly process to obtain nanoparticles with an additional well-defined secondary pore (7.5–33.4 nm or larger). Coordinated water of the metal ion and methoxy group of the silica source react to produce a complex in which two hydroxy sides are in close vicinity to speed up the condensation reaction. We propose a hydrolysis and condensation reaction mechanism for TMOS to highlight the role of the metal ion as a catalyst.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition metal salt catalysed green synthesis of mesoporous silica nanoparticles\",\"authors\":\"Assel Amirzhanova ,&nbsp;Najeeb Ullah ,&nbsp;Ömer Dag\",\"doi\":\"10.1016/j.micromeso.2024.113233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventionally, mesoporous silica nanoparticles are prepared by catalysing silicon alkoxides using acids or bases and are highly important in storage, delivery, and catalysis. Here, for the first time, we demonstrate that a transition metal ion (such as Ni(II), Co(II), and Mn(II)) also catalyses the hydrolysis and condensation reactions of silicon alkoxides in aqueous media without any additional acid or base to synthesize mesostructured and micro/mesostructured silica nanoparticles. An aqueous solution of a transition metal salt (specifically, nitrate salts of Ni(II), Co(II), or Mn(II), or chloride and sulphate salts of Ni(II)), 10-Lauryl ether (C<sub>12</sub>H<sub>25</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>10</sub>OH, C<sub>12</sub>E<sub>10</sub>) and cetyltrimethylammonium bromide (C<sub>16</sub>H<sub>33</sub>N(CH<sub>3</sub>)<sub>3</sub>Br, CTAB), and tetramethyl orthosilicate (TMOS) undergoes a precipitation reaction at room temperature, yielding ultra-small ordered mesostructured silica nanoparticles. These nanoparticles are subsequently calcined to produce mesoporous silica (<em>meso</em>-SiO<sub>2</sub>) with a high surface area (680–871 m<sup>2</sup>/g), large pore-volume (2.2–3.71 cm<sup>3</sup>/g), and small pore-size (1.2–3.0 nm). Moreover, the counter anions of the salts play an important role in the assembly process to obtain nanoparticles with an additional well-defined secondary pore (7.5–33.4 nm or larger). Coordinated water of the metal ion and methoxy group of the silica source react to produce a complex in which two hydroxy sides are in close vicinity to speed up the condensation reaction. We propose a hydrolysis and condensation reaction mechanism for TMOS to highlight the role of the metal ion as a catalyst.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124002555\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124002555","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

传统上,介孔二氧化硅纳米粒子是通过使用酸或碱催化硅烷氧基化合物制备的,在存储、传输和催化方面具有非常重要的作用。在这里,我们首次证明了过渡金属离子(如 Ni(II)、Co(II) 和 Mn(II))也能在水介质中催化硅烷氧基化合物的水解和缩合反应,而无需额外的酸或碱,从而合成介结构和微/介结构二氧化硅纳米粒子。过渡金属盐(特别是 Ni(II)、Co(II)或 Mn(II)的硝酸盐,或 Ni(II)的氯酸盐和硫酸盐)、10-月桂基醚(C12H25(OCH2CH2)10OH、C12E10)和十六烷基三甲基溴化铵(C16H33N(CH3)3Br,CTAB)以及正硅酸四甲酯(TMOS)在室温下发生沉淀反应,生成超小型有序介观结构二氧化硅纳米颗粒。这些纳米颗粒随后经过煅烧,生成具有高表面积(680-871 m2/g)、大孔体积(2.2-3.71 cm3/g)和小孔径(1.2-3.0 nm)的介孔二氧化硅(meso-SiO2)。此外,盐类的反阴离子在组装过程中也发挥了重要作用,从而获得了具有额外的明确二级孔隙(7.5-33.4 nm 或更大)的纳米粒子。金属离子的配位水与二氧化硅源的甲氧基发生反应,生成一种复合物,其中两个羟基侧非常接近,从而加速了缩合反应。我们提出了 TMOS 的水解和缩合反应机理,以突出金属离子作为催化剂的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transition metal salt catalysed green synthesis of mesoporous silica nanoparticles

Conventionally, mesoporous silica nanoparticles are prepared by catalysing silicon alkoxides using acids or bases and are highly important in storage, delivery, and catalysis. Here, for the first time, we demonstrate that a transition metal ion (such as Ni(II), Co(II), and Mn(II)) also catalyses the hydrolysis and condensation reactions of silicon alkoxides in aqueous media without any additional acid or base to synthesize mesostructured and micro/mesostructured silica nanoparticles. An aqueous solution of a transition metal salt (specifically, nitrate salts of Ni(II), Co(II), or Mn(II), or chloride and sulphate salts of Ni(II)), 10-Lauryl ether (C12H25(OCH2CH2)10OH, C12E10) and cetyltrimethylammonium bromide (C16H33N(CH3)3Br, CTAB), and tetramethyl orthosilicate (TMOS) undergoes a precipitation reaction at room temperature, yielding ultra-small ordered mesostructured silica nanoparticles. These nanoparticles are subsequently calcined to produce mesoporous silica (meso-SiO2) with a high surface area (680–871 m2/g), large pore-volume (2.2–3.71 cm3/g), and small pore-size (1.2–3.0 nm). Moreover, the counter anions of the salts play an important role in the assembly process to obtain nanoparticles with an additional well-defined secondary pore (7.5–33.4 nm or larger). Coordinated water of the metal ion and methoxy group of the silica source react to produce a complex in which two hydroxy sides are in close vicinity to speed up the condensation reaction. We propose a hydrolysis and condensation reaction mechanism for TMOS to highlight the role of the metal ion as a catalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
期刊最新文献
Editorial Board Modulating dielectric properties of polyimide composite membranes with hydrophobic mesoporous silica via ball milling processing Bimodal MWCNT-SiO2 mesoporous composites and related silicas with tubular morphology through an easy and fast protocol The effect of solvent type and composition on the synthesis of boron-doped ordered mesoporous carbons A novel zeolite template carbon (ZTC) for pharmaceutical removal in advanced wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1