多变量时间序列贝叶斯谱分析的非参数校正似然法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-25 DOI:10.1016/j.csda.2024.108010
Yixuan Liu , Claudia Kirch , Jeong Eun Lee , Renate Meyer
{"title":"多变量时间序列贝叶斯谱分析的非参数校正似然法","authors":"Yixuan Liu ,&nbsp;Claudia Kirch ,&nbsp;Jeong Eun Lee ,&nbsp;Renate Meyer","doi":"10.1016/j.csda.2024.108010","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series is presented. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. A proof of mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series is given. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach, a generalisation of the multivariate Whittle-likelihood-based method of <span>Meier et al. (2020)</span> as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of <span>Kirch et al. (2019)</span> to the multivariate case is presented. It is demonstrated that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. Its practical advantages are illustrated by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and a multivariate time series of windspeed data at six locations in California.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016794732400094X/pdfft?md5=4194de676b76fa0193f3ea88ff4e7bdc&pid=1-s2.0-S016794732400094X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A nonparametrically corrected likelihood for Bayesian spectral analysis of multivariate time series\",\"authors\":\"Yixuan Liu ,&nbsp;Claudia Kirch ,&nbsp;Jeong Eun Lee ,&nbsp;Renate Meyer\",\"doi\":\"10.1016/j.csda.2024.108010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series is presented. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. A proof of mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series is given. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach, a generalisation of the multivariate Whittle-likelihood-based method of <span>Meier et al. (2020)</span> as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of <span>Kirch et al. (2019)</span> to the multivariate case is presented. It is demonstrated that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. Its practical advantages are illustrated by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and a multivariate time series of windspeed data at six locations in California.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016794732400094X/pdfft?md5=4194de676b76fa0193f3ea88ff4e7bdc&pid=1-s2.0-S016794732400094X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016794732400094X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732400094X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种对静态多变量时间序列进行贝叶斯非参数谱分析的新方法。从参数向量自回归模型开始,在频域对参数似然进行非参数调整,以考虑参数假设的潜在偏差。给出了非参数修正似然、多变量惠特尔似然近似和高斯时间序列精确似然的相互连续性证明。将用于单变量谱密度的非参数伯恩斯坦-德里赫特过程先验的多变量扩展到赫米特正定谱密度矩阵空间,并直接在校正矩阵上指定。然后使用该先验的无穷级数表示来开发马尔科夫链蒙特卡罗算法,以便从后验分布中采样。为了便于使用和复制,我们公开了代码。通过这种新方法,介绍了 Meier 等人(2020 年)基于惠特尔似然法的多变量方法的一般化,以及 Kirch 等人(2019 年)单变量静态时间序列非参数校正似然法在多变量情况下的扩展。研究表明,非参数校正似然结合了参数模型的效率和非参数模型的稳健性。综合模拟研究说明了其数值精确性。通过对两个环境时间序列数据集(南方涛动指数和鱼类繁殖的双变量时间序列以及加利福尼亚州六个地点风速数据的多变量时间序列)进行频谱分析,说明了该模型的实际优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A nonparametrically corrected likelihood for Bayesian spectral analysis of multivariate time series

A novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series is presented. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. A proof of mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series is given. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach, a generalisation of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case is presented. It is demonstrated that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. Its practical advantages are illustrated by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and a multivariate time series of windspeed data at six locations in California.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1