分层负二项-二项数据模型的双 Pólya-Gamma 数据扩充方案

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-06-20 DOI:10.1016/j.csda.2024.108009
Xuan Ma, Jenný Brynjarsdóttir, Thomas LaFramboise
{"title":"分层负二项-二项数据模型的双 Pólya-Gamma 数据扩充方案","authors":"Xuan Ma,&nbsp;Jenný Brynjarsdóttir,&nbsp;Thomas LaFramboise","doi":"10.1016/j.csda.2024.108009","DOIUrl":null,"url":null,"abstract":"<div><p>A double Pólya-Gamma data augmentation scheme is developed for posterior sampling from a Bayesian hierarchical model of total and categorical count data. The scheme applies to a Negative Binomial - Binomial (NBB) hierarchical regression model with logit links and normal priors on regression coefficients. The approach is shown to be very efficient and in most cases out-performs the Stan program. The hierarchical modeling framework and the Pólya-Gamma data augmentation scheme are applied to human mitochondrial DNA data.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"199 ","pages":"Article 108009"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000938/pdfft?md5=5e06b3420d4ee7efb587c1f231e8d551&pid=1-s2.0-S0167947324000938-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A double Pólya-Gamma data augmentation scheme for a hierarchical Negative Binomial - Binomial data model\",\"authors\":\"Xuan Ma,&nbsp;Jenný Brynjarsdóttir,&nbsp;Thomas LaFramboise\",\"doi\":\"10.1016/j.csda.2024.108009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A double Pólya-Gamma data augmentation scheme is developed for posterior sampling from a Bayesian hierarchical model of total and categorical count data. The scheme applies to a Negative Binomial - Binomial (NBB) hierarchical regression model with logit links and normal priors on regression coefficients. The approach is shown to be very efficient and in most cases out-performs the Stan program. The hierarchical modeling framework and the Pólya-Gamma data augmentation scheme are applied to human mitochondrial DNA data.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"199 \",\"pages\":\"Article 108009\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000938/pdfft?md5=5e06b3420d4ee7efb587c1f231e8d551&pid=1-s2.0-S0167947324000938-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000938\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000938","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种双 Pólya-Gamma 数据扩增方案,用于从总体和分类计数数据的贝叶斯分层模型中进行后验采样。该方案适用于带有对数链接和回归系数正态先验的负二项-二项(NBB)分层回归模型。结果表明,该方法非常高效,在大多数情况下都优于 Stan 程序。分层建模框架和 Pólya-Gamma 数据增强方案被应用于人类线粒体 DNA 数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A double Pólya-Gamma data augmentation scheme for a hierarchical Negative Binomial - Binomial data model

A double Pólya-Gamma data augmentation scheme is developed for posterior sampling from a Bayesian hierarchical model of total and categorical count data. The scheme applies to a Negative Binomial - Binomial (NBB) hierarchical regression model with logit links and normal priors on regression coefficients. The approach is shown to be very efficient and in most cases out-performs the Stan program. The hierarchical modeling framework and the Pólya-Gamma data augmentation scheme are applied to human mitochondrial DNA data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm Editorial Board Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation Confidence intervals for tree-structured varying coefficients Efficient computation of sparse and robust maximum association estimators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1