不同氧气浓度下浮力湍流扩散火焰中的热辐射和烟尘:测量结果及其对辐射建模的影响

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-06-24 DOI:10.1016/j.combustflame.2024.113587
Gang Xiong, Dong Zeng, Yi Wang
{"title":"不同氧气浓度下浮力湍流扩散火焰中的热辐射和烟尘:测量结果及其对辐射建模的影响","authors":"Gang Xiong,&nbsp;Dong Zeng,&nbsp;Yi Wang","doi":"10.1016/j.combustflame.2024.113587","DOIUrl":null,"url":null,"abstract":"<div><p>To develop and validate numerical models for sooty fires, we have established a dataset of the thermal radiation and soot in 15 kW buoyant turbulent ethylene flames. The flames are stabilized on a water-cooled round burner with a 15.2 cm outer diameter (D) and 13.7 cm inner diameter at three oxygen concentrations (OC) of 15.2 %, 16.8 %, and 20.9 %. A two-color optical probe is used to measure the spectral radiative intensities at two wavelengths, from which soot volume fraction and temperature are determined. The overall mean soot volume fractions are consistent with results from laser induced incandescence and laser extinction measurements. For a given OC, the mean soot temperature and volume fraction conditioned on the radiative intensity greater than a threshold value (instrumental detection limit) are relatively independent of spatial location. When OC decreases from 20.9 % to 15.2 %, the conditional mean soot volume fraction decreases by a factor of two. However, the conditional mean soot temperature at different locations and OCs are within a narrow range (with a standard deviation of only 22 K). The effect of detection limit is discussed, and the results show that the correlation between soot volume fraction and temperature is weak with a sufficiently low detection limit. Based on the experimental findings, a simplified model for the turbulence-radiation interaction (TRI) is proposed for application in the numerical modeling of soot radiation. The model approximates the turbulent closure term for radiation by taking advantage of the fact that the soot temperature has a relatively unchanged mean value and a narrow quasi-normal distribution within the buoyant turbulent flame, regardless of the spatial location and oxygen concentration. Therefore, the soot emission power can be directly calculated from the mean soot volume fraction and conditional mean soot temperature in a decoupled manner.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal radiation and soot in buoyant turbulent diffusion flames under different oxygen concentrations: Measurements and implications to radiation modeling\",\"authors\":\"Gang Xiong,&nbsp;Dong Zeng,&nbsp;Yi Wang\",\"doi\":\"10.1016/j.combustflame.2024.113587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To develop and validate numerical models for sooty fires, we have established a dataset of the thermal radiation and soot in 15 kW buoyant turbulent ethylene flames. The flames are stabilized on a water-cooled round burner with a 15.2 cm outer diameter (D) and 13.7 cm inner diameter at three oxygen concentrations (OC) of 15.2 %, 16.8 %, and 20.9 %. A two-color optical probe is used to measure the spectral radiative intensities at two wavelengths, from which soot volume fraction and temperature are determined. The overall mean soot volume fractions are consistent with results from laser induced incandescence and laser extinction measurements. For a given OC, the mean soot temperature and volume fraction conditioned on the radiative intensity greater than a threshold value (instrumental detection limit) are relatively independent of spatial location. When OC decreases from 20.9 % to 15.2 %, the conditional mean soot volume fraction decreases by a factor of two. However, the conditional mean soot temperature at different locations and OCs are within a narrow range (with a standard deviation of only 22 K). The effect of detection limit is discussed, and the results show that the correlation between soot volume fraction and temperature is weak with a sufficiently low detection limit. Based on the experimental findings, a simplified model for the turbulence-radiation interaction (TRI) is proposed for application in the numerical modeling of soot radiation. The model approximates the turbulent closure term for radiation by taking advantage of the fact that the soot temperature has a relatively unchanged mean value and a narrow quasi-normal distribution within the buoyant turbulent flame, regardless of the spatial location and oxygen concentration. Therefore, the soot emission power can be directly calculated from the mean soot volume fraction and conditional mean soot temperature in a decoupled manner.</p></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024002967\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024002967","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了开发和验证烟尘火灾的数值模型,我们建立了 15 千瓦浮力湍流乙烯火焰的热辐射和烟尘数据集。火焰稳定在一个外径(D)为 15.2 厘米、内径为 13.7 厘米的水冷圆形燃烧器上,氧气浓度(OC)分别为 15.2%、16.8% 和 20.9%。使用双色光学探针测量两个波长的光谱辐射强度,并据此确定烟尘体积分数和温度。总体平均烟尘体积分数与激光诱导炽化和激光消光测量的结果一致。对于给定的 OC,在辐射强度大于阈值(仪器检测极限)的条件下,平均烟尘温度和体积分数与空间位置相对无关。当 OC 从 20.9% 下降到 15.2% 时,条件平均烟尘体积分数下降了 2 倍。然而,不同地点和不同 OC 的条件平均烟尘温度范围很窄(标准偏差仅为 22 K)。讨论了检测限的影响,结果表明,在检测限足够低的情况下,烟尘体积分数与温度之间的相关性很弱。根据实验结果,提出了一个简化的湍流-辐射相互作用(TRI)模型,用于烟尘辐射的数值建模。该模型利用烟尘温度在浮力湍流火焰中具有相对不变的平均值和窄的准正态分布(与空间位置和氧气浓度无关)这一事实,对辐射的湍流闭合项进行了近似。因此,烟尘发射功率可以直接从平均烟尘体积分数和条件平均烟尘温度中脱钩计算出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal radiation and soot in buoyant turbulent diffusion flames under different oxygen concentrations: Measurements and implications to radiation modeling

To develop and validate numerical models for sooty fires, we have established a dataset of the thermal radiation and soot in 15 kW buoyant turbulent ethylene flames. The flames are stabilized on a water-cooled round burner with a 15.2 cm outer diameter (D) and 13.7 cm inner diameter at three oxygen concentrations (OC) of 15.2 %, 16.8 %, and 20.9 %. A two-color optical probe is used to measure the spectral radiative intensities at two wavelengths, from which soot volume fraction and temperature are determined. The overall mean soot volume fractions are consistent with results from laser induced incandescence and laser extinction measurements. For a given OC, the mean soot temperature and volume fraction conditioned on the radiative intensity greater than a threshold value (instrumental detection limit) are relatively independent of spatial location. When OC decreases from 20.9 % to 15.2 %, the conditional mean soot volume fraction decreases by a factor of two. However, the conditional mean soot temperature at different locations and OCs are within a narrow range (with a standard deviation of only 22 K). The effect of detection limit is discussed, and the results show that the correlation between soot volume fraction and temperature is weak with a sufficiently low detection limit. Based on the experimental findings, a simplified model for the turbulence-radiation interaction (TRI) is proposed for application in the numerical modeling of soot radiation. The model approximates the turbulent closure term for radiation by taking advantage of the fact that the soot temperature has a relatively unchanged mean value and a narrow quasi-normal distribution within the buoyant turbulent flame, regardless of the spatial location and oxygen concentration. Therefore, the soot emission power can be directly calculated from the mean soot volume fraction and conditional mean soot temperature in a decoupled manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Automatization of theoretical kinetic data generation for tabulated TS models building - Part 1: Application to 1,3-H-shift reactions Turbulent spray combustion modeling in reduced tabulation parameter space by similarity mapping Numerical investigation of lean methane flame response to NRP discharges actuation Oxidation of butane-2,3-dione at high pressure: Implications for ketene chemistry Ignition and combustion characteristics of boron particles under reduced pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1