Enqing Wang , Jinpeng Tuo , Fengqi Hou , Dongjie Li , Yuanhang Li , Lvhao Zheng , Kai Zhang , Longlong Dong , Yi Yang , Hao Wang , Aijun Huang , Lai-Chang Zhang
{"title":"激光表面淬火诱导的 Ti-6Al-4V 合金梯度微结构和力学性能","authors":"Enqing Wang , Jinpeng Tuo , Fengqi Hou , Dongjie Li , Yuanhang Li , Lvhao Zheng , Kai Zhang , Longlong Dong , Yi Yang , Hao Wang , Aijun Huang , Lai-Chang Zhang","doi":"10.1016/j.smmf.2024.100056","DOIUrl":null,"url":null,"abstract":"<div><p>Laser surface quenching (LSQ) was employed to fabricate gradient microstructures in a Ti–6Al–4V alloy. The influence of the LSQ parameters on the surface morphology, the depth of the LSQ layer, gradient microstructure, and microhardness were investigated. The results showed that as the laser energy density increases, the surface roughness and thickness of the heat-affected zone (HAZ) increase. From the internal matrix to the surface, the microstructure in the HAZ changes from the equiaxed structure to the mixt structure, martensitic structure, Widmanstätten structure, and then the oxide layer. The size of the β grains gradually decreases as the distance from the surface increases. The different microstructures and elemental distributions in the HAZ result in different microhardness values, which gradually decrease from the surface to the matrix. The laser energy density of 8.0 J/mm<sup>2</sup> is recommended to obtain a HAZ with a thickness of 1200 μm and a peak microhardness of 393 ± 7.3 H V without surface remelting. The LSQ process may help to increase the longevity of Ti–6Al–4V alloy implants by hardening the surface.</p></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"2 ","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772810224000138/pdfft?md5=b5d5c7c903e5da08d8da28047c59d13d&pid=1-s2.0-S2772810224000138-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Gradient microstructures and mechanical properties of Ti–6Al–4V alloy induced by laser surface quenching\",\"authors\":\"Enqing Wang , Jinpeng Tuo , Fengqi Hou , Dongjie Li , Yuanhang Li , Lvhao Zheng , Kai Zhang , Longlong Dong , Yi Yang , Hao Wang , Aijun Huang , Lai-Chang Zhang\",\"doi\":\"10.1016/j.smmf.2024.100056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser surface quenching (LSQ) was employed to fabricate gradient microstructures in a Ti–6Al–4V alloy. The influence of the LSQ parameters on the surface morphology, the depth of the LSQ layer, gradient microstructure, and microhardness were investigated. The results showed that as the laser energy density increases, the surface roughness and thickness of the heat-affected zone (HAZ) increase. From the internal matrix to the surface, the microstructure in the HAZ changes from the equiaxed structure to the mixt structure, martensitic structure, Widmanstätten structure, and then the oxide layer. The size of the β grains gradually decreases as the distance from the surface increases. The different microstructures and elemental distributions in the HAZ result in different microhardness values, which gradually decrease from the surface to the matrix. The laser energy density of 8.0 J/mm<sup>2</sup> is recommended to obtain a HAZ with a thickness of 1200 μm and a peak microhardness of 393 ± 7.3 H V without surface remelting. The LSQ process may help to increase the longevity of Ti–6Al–4V alloy implants by hardening the surface.</p></div>\",\"PeriodicalId\":101164,\"journal\":{\"name\":\"Smart Materials in Manufacturing\",\"volume\":\"2 \",\"pages\":\"Article 100056\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772810224000138/pdfft?md5=b5d5c7c903e5da08d8da28047c59d13d&pid=1-s2.0-S2772810224000138-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772810224000138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772810224000138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gradient microstructures and mechanical properties of Ti–6Al–4V alloy induced by laser surface quenching
Laser surface quenching (LSQ) was employed to fabricate gradient microstructures in a Ti–6Al–4V alloy. The influence of the LSQ parameters on the surface morphology, the depth of the LSQ layer, gradient microstructure, and microhardness were investigated. The results showed that as the laser energy density increases, the surface roughness and thickness of the heat-affected zone (HAZ) increase. From the internal matrix to the surface, the microstructure in the HAZ changes from the equiaxed structure to the mixt structure, martensitic structure, Widmanstätten structure, and then the oxide layer. The size of the β grains gradually decreases as the distance from the surface increases. The different microstructures and elemental distributions in the HAZ result in different microhardness values, which gradually decrease from the surface to the matrix. The laser energy density of 8.0 J/mm2 is recommended to obtain a HAZ with a thickness of 1200 μm and a peak microhardness of 393 ± 7.3 H V without surface remelting. The LSQ process may help to increase the longevity of Ti–6Al–4V alloy implants by hardening the surface.