用分子方法和基于图表的方法加强汉森溶解度预测

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-06-21 DOI:10.1016/j.chemolab.2024.105168
Darja Cvetković, Marija Mitrović Dankulov, Aleksandar Bogojević, Saša Lazović, Darija Obradović
{"title":"用分子方法和基于图表的方法加强汉森溶解度预测","authors":"Darja Cvetković,&nbsp;Marija Mitrović Dankulov,&nbsp;Aleksandar Bogojević,&nbsp;Saša Lazović,&nbsp;Darija Obradović","doi":"10.1016/j.chemolab.2024.105168","DOIUrl":null,"url":null,"abstract":"<div><p>The fast and accurate prediction of Hansen solubility benefits many diverse fields such as pharmaceuticals, the food industry, and cosmetics. To estimate the individual HSP values (polar, dispersive, and hydrogen bonding components), we investigated the performance of using Mordred descriptors in multiple linear regressions and XGBoost modeling. For HSP predictions, we also tested a graph-based molecular representation with graph neural network (GNN) modeling. To select the optimal models for final training and predictions, we used nested cross-validation and hyper-parameter optimization. The models with the best predictive performance were selected through internal (<em>R</em><sup><em>2</em></sup><sub>train</sub>, RMSE, MEPcv) and external (RMSEP, CCC, MEP, <em>R</em><sup><em>2</em></sup><sub>test</sub>, <em>ar</em><sup>2</sup>m, Δ<em>r</em><sup>2</sup>m) validation metrics using ∼1200 compounds from free-available database <span>https://www.stevenabbott.co.uk</span><svg><path></path></svg>. To confirm the practical reliability, we examined the agreement of experimentally obtained HSP data from the literature for 93 compounds and the data predicted by the created models. The results of GNN modeling showed the best predictive characteristics, which include a coefficient of determination between experimentally obtained and predicted HSP values greater than 0.76 for polar and hydrogen bond forces and greater than 0.66 for dispersive forces. Interpreting the fundamental basis of Hansen solubility using the created MLR equations and XGBoost models, HSP values were found to be influenced by van der Waals volume characteristics, 2D matrix molecular representation, and polarity. We elaborated on the practical benefits of using the selected GNN method through Hansen's solubility sphere as an example. This is the first study to demonstrate the advantages of GNN in predicting individual HSP components, as well as the first study to describe in detail their molecular basis using MLR and XGBoost modeling.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"251 ","pages":"Article 105168"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Hansen Solubility Predictions with Molecular and Graph-Based Approaches\",\"authors\":\"Darja Cvetković,&nbsp;Marija Mitrović Dankulov,&nbsp;Aleksandar Bogojević,&nbsp;Saša Lazović,&nbsp;Darija Obradović\",\"doi\":\"10.1016/j.chemolab.2024.105168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fast and accurate prediction of Hansen solubility benefits many diverse fields such as pharmaceuticals, the food industry, and cosmetics. To estimate the individual HSP values (polar, dispersive, and hydrogen bonding components), we investigated the performance of using Mordred descriptors in multiple linear regressions and XGBoost modeling. For HSP predictions, we also tested a graph-based molecular representation with graph neural network (GNN) modeling. To select the optimal models for final training and predictions, we used nested cross-validation and hyper-parameter optimization. The models with the best predictive performance were selected through internal (<em>R</em><sup><em>2</em></sup><sub>train</sub>, RMSE, MEPcv) and external (RMSEP, CCC, MEP, <em>R</em><sup><em>2</em></sup><sub>test</sub>, <em>ar</em><sup>2</sup>m, Δ<em>r</em><sup>2</sup>m) validation metrics using ∼1200 compounds from free-available database <span>https://www.stevenabbott.co.uk</span><svg><path></path></svg>. To confirm the practical reliability, we examined the agreement of experimentally obtained HSP data from the literature for 93 compounds and the data predicted by the created models. The results of GNN modeling showed the best predictive characteristics, which include a coefficient of determination between experimentally obtained and predicted HSP values greater than 0.76 for polar and hydrogen bond forces and greater than 0.66 for dispersive forces. Interpreting the fundamental basis of Hansen solubility using the created MLR equations and XGBoost models, HSP values were found to be influenced by van der Waals volume characteristics, 2D matrix molecular representation, and polarity. We elaborated on the practical benefits of using the selected GNN method through Hansen's solubility sphere as an example. This is the first study to demonstrate the advantages of GNN in predicting individual HSP components, as well as the first study to describe in detail their molecular basis using MLR and XGBoost modeling.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"251 \",\"pages\":\"Article 105168\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001084\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001084","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

快速准确地预测汉森溶解度有利于制药、食品工业和化妆品等多个领域。为了估算各个 HSP 值(极性、分散性和氢键成分),我们研究了在多重线性回归和 XGBoost 建模中使用 Mordred 描述符的性能。对于 HSP 预测,我们还测试了基于图的分子表示法和图神经网络(GNN)建模。为了选择用于最终训练和预测的最佳模型,我们使用了嵌套交叉验证和超参数优化。利用免费数据库 https://www.stevenabbott.co.uk 中的 1200 个化合物,通过内部(R2train、RMSE、MEPcv)和外部(RMSEP、CCC、MEP、R2test、ar2m、Δr2m)验证指标,选出了预测性能最佳的模型。为了证实模型的实际可靠性,我们检验了从文献中获得的 93 种化合物的 HSP 实验数据与所建模型预测数据的一致性。GNN 模型的结果显示了最佳的预测特性,其中包括极性力和氢键力方面实验获得的 HSP 值与预测值之间的决定系数大于 0.76,分散力方面的决定系数大于 0.66。通过使用创建的 MLR 方程和 XGBoost 模型解释汉森溶解度的基本原理,我们发现 HSP 值受到范德华体积特性、二维矩阵分子表示法和极性的影响。我们以汉森溶解度球为例,阐述了使用所选 GNN 方法的实际优势。这是第一项展示 GNN 在预测单个 HSP 成分方面优势的研究,也是第一项使用 MLR 和 XGBoost 建模详细描述其分子基础的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Hansen Solubility Predictions with Molecular and Graph-Based Approaches

The fast and accurate prediction of Hansen solubility benefits many diverse fields such as pharmaceuticals, the food industry, and cosmetics. To estimate the individual HSP values (polar, dispersive, and hydrogen bonding components), we investigated the performance of using Mordred descriptors in multiple linear regressions and XGBoost modeling. For HSP predictions, we also tested a graph-based molecular representation with graph neural network (GNN) modeling. To select the optimal models for final training and predictions, we used nested cross-validation and hyper-parameter optimization. The models with the best predictive performance were selected through internal (R2train, RMSE, MEPcv) and external (RMSEP, CCC, MEP, R2test, ar2m, Δr2m) validation metrics using ∼1200 compounds from free-available database https://www.stevenabbott.co.uk. To confirm the practical reliability, we examined the agreement of experimentally obtained HSP data from the literature for 93 compounds and the data predicted by the created models. The results of GNN modeling showed the best predictive characteristics, which include a coefficient of determination between experimentally obtained and predicted HSP values greater than 0.76 for polar and hydrogen bond forces and greater than 0.66 for dispersive forces. Interpreting the fundamental basis of Hansen solubility using the created MLR equations and XGBoost models, HSP values were found to be influenced by van der Waals volume characteristics, 2D matrix molecular representation, and polarity. We elaborated on the practical benefits of using the selected GNN method through Hansen's solubility sphere as an example. This is the first study to demonstrate the advantages of GNN in predicting individual HSP components, as well as the first study to describe in detail their molecular basis using MLR and XGBoost modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model Prediction of potential antitumor components in Ganoderma lucidum: A combined approach using machine learning and molecular docking Spectra data calibration based on deep residual modeling of independent component regression Enhanced CO2 leak detection in soil: High-fidelity digital colorimetry with machine learning and ACES AP0 Quantitative structure properties relationship (QSPR) analysis for physicochemical properties of nonsteroidal anti-inflammatory drugs (NSAIDs) usingVe degree-based reducible topological indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1