Daniele Tardani , Marco Taussi , Philippe Robidoux , Pablo Sánchez-Alfaro , Pamela Pérez-Flores , Gabriela Serrano , Gonzalo Morales , Santiago Tassara , Fausto Grassa , Vicente Soler , Diego Morata
{"title":"通过气体地温测量、土壤二氧化碳脱气和热量释放估算来评估阿尔佩胡埃热液区(智利南部索利普利火山)的地热潜力","authors":"Daniele Tardani , Marco Taussi , Philippe Robidoux , Pablo Sánchez-Alfaro , Pamela Pérez-Flores , Gabriela Serrano , Gonzalo Morales , Santiago Tassara , Fausto Grassa , Vicente Soler , Diego Morata","doi":"10.1016/j.geothermics.2024.103092","DOIUrl":null,"url":null,"abstract":"<div><p>The Alpehue Hydrothermal Field (AHF) near the Sollipulli Volcano in the Southern Volcanic Zone of Chile shows promise as a significant geothermal resource. A comprehensive geothermal exploration survey was conducted, including the evaluation of hydrothermal gases, geothermometer calculations, and CO<sub>2</sub> flux measurements, to assess the AHF's geothermal potential. Our results indicate that the hydrothermal gasses at the AHF primarily originate from primitive, mantle-derived sources, with some contribution from crustal sediments. Two different CO<sub>2</sub> populations of fluxes were identified. One corresponds to the background emission related to the soil biological activity (mean ∼7.7 g·m<sup>−2</sup>·d<sup>−1</sup>), and the other, much more significant, emanates from an endogenous source related to the Alpehue hydrothermal reservoir (mean ∼461 g·m<sup>−2</sup>·d<sup>−1</sup>). Reservoir temperatures were calculated using gas geothermometry yielding average temperatures of 249 °C. The calculated heat flow rate of the AHF is approximately 3.3 MW and the heat flux corresponds to 156 thermal MW⋅km<sup>−2</sup>, which could be considered a medium geothermal potential comparable to other systems worldwide. Although further studies are needed to fully address its exploitability, this study presents favorable characteristics of the AHF that make it a promising avenue for further exploration.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"122 ","pages":"Article 103092"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0375650524001809/pdfft?md5=66eddd4c1ab6b389bdcfc9255ee9f28f&pid=1-s2.0-S0375650524001809-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Gas geothermometry, soil CO2 degassing, and heat release estimation to assess the geothermal potential of the Alpehue Hydrothermal Field (Sollipulli volcano, Southern Chile)\",\"authors\":\"Daniele Tardani , Marco Taussi , Philippe Robidoux , Pablo Sánchez-Alfaro , Pamela Pérez-Flores , Gabriela Serrano , Gonzalo Morales , Santiago Tassara , Fausto Grassa , Vicente Soler , Diego Morata\",\"doi\":\"10.1016/j.geothermics.2024.103092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Alpehue Hydrothermal Field (AHF) near the Sollipulli Volcano in the Southern Volcanic Zone of Chile shows promise as a significant geothermal resource. A comprehensive geothermal exploration survey was conducted, including the evaluation of hydrothermal gases, geothermometer calculations, and CO<sub>2</sub> flux measurements, to assess the AHF's geothermal potential. Our results indicate that the hydrothermal gasses at the AHF primarily originate from primitive, mantle-derived sources, with some contribution from crustal sediments. Two different CO<sub>2</sub> populations of fluxes were identified. One corresponds to the background emission related to the soil biological activity (mean ∼7.7 g·m<sup>−2</sup>·d<sup>−1</sup>), and the other, much more significant, emanates from an endogenous source related to the Alpehue hydrothermal reservoir (mean ∼461 g·m<sup>−2</sup>·d<sup>−1</sup>). Reservoir temperatures were calculated using gas geothermometry yielding average temperatures of 249 °C. The calculated heat flow rate of the AHF is approximately 3.3 MW and the heat flux corresponds to 156 thermal MW⋅km<sup>−2</sup>, which could be considered a medium geothermal potential comparable to other systems worldwide. Although further studies are needed to fully address its exploitability, this study presents favorable characteristics of the AHF that make it a promising avenue for further exploration.</p></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"122 \",\"pages\":\"Article 103092\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0375650524001809/pdfft?md5=66eddd4c1ab6b389bdcfc9255ee9f28f&pid=1-s2.0-S0375650524001809-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650524001809\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524001809","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Gas geothermometry, soil CO2 degassing, and heat release estimation to assess the geothermal potential of the Alpehue Hydrothermal Field (Sollipulli volcano, Southern Chile)
The Alpehue Hydrothermal Field (AHF) near the Sollipulli Volcano in the Southern Volcanic Zone of Chile shows promise as a significant geothermal resource. A comprehensive geothermal exploration survey was conducted, including the evaluation of hydrothermal gases, geothermometer calculations, and CO2 flux measurements, to assess the AHF's geothermal potential. Our results indicate that the hydrothermal gasses at the AHF primarily originate from primitive, mantle-derived sources, with some contribution from crustal sediments. Two different CO2 populations of fluxes were identified. One corresponds to the background emission related to the soil biological activity (mean ∼7.7 g·m−2·d−1), and the other, much more significant, emanates from an endogenous source related to the Alpehue hydrothermal reservoir (mean ∼461 g·m−2·d−1). Reservoir temperatures were calculated using gas geothermometry yielding average temperatures of 249 °C. The calculated heat flow rate of the AHF is approximately 3.3 MW and the heat flux corresponds to 156 thermal MW⋅km−2, which could be considered a medium geothermal potential comparable to other systems worldwide. Although further studies are needed to fully address its exploitability, this study presents favorable characteristics of the AHF that make it a promising avenue for further exploration.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.