基于磷酸铁锂和具有热关断特性的热敏微球的高性能锂离子电池正极电极

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-06-28 DOI:10.1016/j.jpowsour.2024.234956
Inês F. Monteiro , Rafael S. Pinto , Maria M. Silva , Arkaitz Fidalgo-Marijuan , Carlos M. Costa , Senentxu Lanceros-Méndez , Renato Gonçalves
{"title":"基于磷酸铁锂和具有热关断特性的热敏微球的高性能锂离子电池正极电极","authors":"Inês F. Monteiro ,&nbsp;Rafael S. Pinto ,&nbsp;Maria M. Silva ,&nbsp;Arkaitz Fidalgo-Marijuan ,&nbsp;Carlos M. Costa ,&nbsp;Senentxu Lanceros-Méndez ,&nbsp;Renato Gonçalves","doi":"10.1016/j.jpowsour.2024.234956","DOIUrl":null,"url":null,"abstract":"<div><p>The critical issue of thermal runaway events in lithium-ion batteries (LIBs) is recognized as a primary cause of battery-related accidents. Despite ongoing efforts to enhance LIB safety, challenges persist due to varying chemical compositions, states of charge, and conditions of use across different batteries. To advance battery safety and considering cost and practicality, this research introduces a novel cathode material with thermal shutdown characteristics. Incorporating thermoplastic microspheres into the cathode matrix does not compromise the cathode's structural integrity, but leads to ionic conductivity value reduction, and a consequent reduction of battery performance for the larger microsphere concentrations of 5.0 wt% and 7.5 wt%. On the other hand, the samples demonstrate a thermal shutdown behaviour, triggered by the volumetric expansion of the microspheres, effectively ceasing electrical and ionic conduction, thereby preventing thermal runaway. The cathode with low microsphere concentration, 2.5 wt% of microspheres, outperforms (155 mAh·g<sup>−1</sup>, at C/8-rate) room temperature battery performance with respect to the conventional cathode and also exhibits thermal shutdown behaviour at 90 °C. The research highlights the potential of integrating expandable microspheres into cathodes for the development of safer batteries, offering a scalable and cost-effective solution compatible with existing battery technologies.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037877532400908X/pdfft?md5=46f4ec51c5009238170766e1cff6ca88&pid=1-s2.0-S037877532400908X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lithium-ion battery high performance cathode electrode based on LiFePO4 and thermal sensitive microspheres with thermal shutdown properties\",\"authors\":\"Inês F. Monteiro ,&nbsp;Rafael S. Pinto ,&nbsp;Maria M. Silva ,&nbsp;Arkaitz Fidalgo-Marijuan ,&nbsp;Carlos M. Costa ,&nbsp;Senentxu Lanceros-Méndez ,&nbsp;Renato Gonçalves\",\"doi\":\"10.1016/j.jpowsour.2024.234956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The critical issue of thermal runaway events in lithium-ion batteries (LIBs) is recognized as a primary cause of battery-related accidents. Despite ongoing efforts to enhance LIB safety, challenges persist due to varying chemical compositions, states of charge, and conditions of use across different batteries. To advance battery safety and considering cost and practicality, this research introduces a novel cathode material with thermal shutdown characteristics. Incorporating thermoplastic microspheres into the cathode matrix does not compromise the cathode's structural integrity, but leads to ionic conductivity value reduction, and a consequent reduction of battery performance for the larger microsphere concentrations of 5.0 wt% and 7.5 wt%. On the other hand, the samples demonstrate a thermal shutdown behaviour, triggered by the volumetric expansion of the microspheres, effectively ceasing electrical and ionic conduction, thereby preventing thermal runaway. The cathode with low microsphere concentration, 2.5 wt% of microspheres, outperforms (155 mAh·g<sup>−1</sup>, at C/8-rate) room temperature battery performance with respect to the conventional cathode and also exhibits thermal shutdown behaviour at 90 °C. The research highlights the potential of integrating expandable microspheres into cathodes for the development of safer batteries, offering a scalable and cost-effective solution compatible with existing battery technologies.</p></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S037877532400908X/pdfft?md5=46f4ec51c5009238170766e1cff6ca88&pid=1-s2.0-S037877532400908X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037877532400908X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877532400908X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(LIB)中的热失控事件是公认的电池相关事故的主要原因。尽管人们一直在努力提高锂离子电池的安全性,但由于不同电池的化学成分、充电状态和使用条件各不相同,因此挑战依然存在。为了提高电池安全性,同时考虑到成本和实用性,本研究引入了一种具有热关断特性的新型阴极材料。在阴极基质中加入热塑性微球并不会损害阴极的结构完整性,但会导致离子电导率值降低,从而降低电池性能(微球浓度为 5.0 wt% 和 7.5 wt%)。另一方面,样品在微球体积膨胀的作用下会出现热关断现象,从而有效地停止电传导和离子传导,防止热失控。与传统阴极相比,微球浓度较低(2.5 wt%)的阴极室温电池性能更优(155 mAh-g-1,C/8 速率),在 90 °C 时也表现出热关断行为。这项研究强调了将可膨胀微球集成到阴极中以开发更安全电池的潜力,提供了一种与现有电池技术兼容的可扩展且具有成本效益的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lithium-ion battery high performance cathode electrode based on LiFePO4 and thermal sensitive microspheres with thermal shutdown properties

The critical issue of thermal runaway events in lithium-ion batteries (LIBs) is recognized as a primary cause of battery-related accidents. Despite ongoing efforts to enhance LIB safety, challenges persist due to varying chemical compositions, states of charge, and conditions of use across different batteries. To advance battery safety and considering cost and practicality, this research introduces a novel cathode material with thermal shutdown characteristics. Incorporating thermoplastic microspheres into the cathode matrix does not compromise the cathode's structural integrity, but leads to ionic conductivity value reduction, and a consequent reduction of battery performance for the larger microsphere concentrations of 5.0 wt% and 7.5 wt%. On the other hand, the samples demonstrate a thermal shutdown behaviour, triggered by the volumetric expansion of the microspheres, effectively ceasing electrical and ionic conduction, thereby preventing thermal runaway. The cathode with low microsphere concentration, 2.5 wt% of microspheres, outperforms (155 mAh·g−1, at C/8-rate) room temperature battery performance with respect to the conventional cathode and also exhibits thermal shutdown behaviour at 90 °C. The research highlights the potential of integrating expandable microspheres into cathodes for the development of safer batteries, offering a scalable and cost-effective solution compatible with existing battery technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Impact of fuel starvation–induced anode carbon corrosion in proton exchange membrane fuel cells on the structure of the membrane electrode assembly and exhaust gas emissions: A quantitative case study A eutectic mixture catalyzed straight forward production of functional carbon from Sargassum tenerrimum for energy storage application The impact of mechanical vibration at cathode on hydrogen yields in water electrolysis Capabilities of a novel electrochemical cell for operando XAS and SAXS investigations for PEM fuel cells and water electrolysers Operando gas chromatography mass spectrometry for the continuous study of overcharge-induced electrolyte decomposition in lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1