{"title":"使用提取-抽象框架进行问题驱动的文本总结","authors":"Mahsa Abazari Kia, Aygul Garifullina, Mathias Kern, Jon Chamberlain, Shoaib Jameel","doi":"10.1111/coin.12689","DOIUrl":null,"url":null,"abstract":"<p>Question-driven automatic text summarization is a popular technique to produce concise and informative answers to specific questions using a document collection. Both query-based and question-driven summarization may not produce reliable summaries nor contain relevant information if they do not take advantage of extractive and abstractive summarization mechanisms to improve performance. In this article, we propose a novel extractive and abstractive hybrid framework designed for question-driven automatic text summarization. The framework consists of complimentary modules that work together to generate an effective summary: (1) discovering appropriate non-redundant sentences as plausible answers using an open-domain multi-hop question answering system based on a convolutional neural network, multi-head attention mechanism and reasoning process; and (2) a novel paraphrasing generative adversarial network model based on transformers rewrites the extracted sentences in an abstractive setup. Experiments show this framework results in more reliable abstractive summary than competing methods. We have performed extensive experiments on public datasets, and the results show our model can outperform many question-driven and query-based baseline methods (an R1, R2, RL increase of 6%–7% for over the next highest baseline).</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Question-driven text summarization using an extractive-abstractive framework\",\"authors\":\"Mahsa Abazari Kia, Aygul Garifullina, Mathias Kern, Jon Chamberlain, Shoaib Jameel\",\"doi\":\"10.1111/coin.12689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Question-driven automatic text summarization is a popular technique to produce concise and informative answers to specific questions using a document collection. Both query-based and question-driven summarization may not produce reliable summaries nor contain relevant information if they do not take advantage of extractive and abstractive summarization mechanisms to improve performance. In this article, we propose a novel extractive and abstractive hybrid framework designed for question-driven automatic text summarization. The framework consists of complimentary modules that work together to generate an effective summary: (1) discovering appropriate non-redundant sentences as plausible answers using an open-domain multi-hop question answering system based on a convolutional neural network, multi-head attention mechanism and reasoning process; and (2) a novel paraphrasing generative adversarial network model based on transformers rewrites the extracted sentences in an abstractive setup. Experiments show this framework results in more reliable abstractive summary than competing methods. We have performed extensive experiments on public datasets, and the results show our model can outperform many question-driven and query-based baseline methods (an R1, R2, RL increase of 6%–7% for over the next highest baseline).</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12689\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12689","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Question-driven text summarization using an extractive-abstractive framework
Question-driven automatic text summarization is a popular technique to produce concise and informative answers to specific questions using a document collection. Both query-based and question-driven summarization may not produce reliable summaries nor contain relevant information if they do not take advantage of extractive and abstractive summarization mechanisms to improve performance. In this article, we propose a novel extractive and abstractive hybrid framework designed for question-driven automatic text summarization. The framework consists of complimentary modules that work together to generate an effective summary: (1) discovering appropriate non-redundant sentences as plausible answers using an open-domain multi-hop question answering system based on a convolutional neural network, multi-head attention mechanism and reasoning process; and (2) a novel paraphrasing generative adversarial network model based on transformers rewrites the extracted sentences in an abstractive setup. Experiments show this framework results in more reliable abstractive summary than competing methods. We have performed extensive experiments on public datasets, and the results show our model can outperform many question-driven and query-based baseline methods (an R1, R2, RL increase of 6%–7% for over the next highest baseline).
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.