Colin Ingalls, Bruce W. Jordan, Allan Keeton, Adam Logan, Yevgeny Zaytman
{"title":"量子计算中的萨尔纳克猜想、循环单元群角和志村曲线","authors":"Colin Ingalls, Bruce W. Jordan, Allan Keeton, Adam Logan, Yevgeny Zaytman","doi":"10.1112/jlms.12952","DOIUrl":null,"url":null,"abstract":"<p>Sarnak's conjecture in quantum computing concerns when the groups <span></span><math>\n <semantics>\n <msub>\n <mo>PU</mo>\n <mn>2</mn>\n </msub>\n <annotation>$\\operatorname{PU}_{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mo>PSU</mo>\n <mn>2</mn>\n </msub>\n <annotation>$\\operatorname{PSU}_{2}$</annotation>\n </semantics></math> over cyclotomic rings <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>[</mo>\n <msub>\n <mi>ζ</mi>\n <mi>n</mi>\n </msub>\n <mo>,</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>${\\mathbb {Z}}[\\zeta _{n}, 1/2]$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ζ</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mn>2</mn>\n <mi>π</mi>\n <mi>i</mi>\n <mo>/</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\zeta _n=e^{2\\pi i/n}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>|</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$4|n$</annotation>\n </semantics></math>, are generated by the Clifford-cyclotomic gate set. We previously settled this using Euler–Poincaré characteristics. A generalization of Sarnak's conjecture is to ask when these groups are generated by torsion elements. An obstruction to this is provided by the corank: a group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n <mo>corank</mo>\n <mi>G</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\operatorname{corank}G&gt;0$</annotation>\n </semantics></math> only if <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is not generated by torsion elements. In this paper, we study the corank of these cyclotomic unitary groups in the families <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$n=2^s$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mrow>\n <mn>3</mn>\n <mo>·</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n </mrow>\n <annotation>$n={3\\cdot 2^s}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>8</mn>\n </mrow>\n <annotation>$n\\geqslant 8$</annotation>\n </semantics></math>, by letting them act on Bruhat–Tits trees. The quotients by this action are finite graphs whose first Betti number is the corank of the group. Our main result is that for the families <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$n=2^s$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>3</mn>\n <mo>·</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$n=3\\cdot 2^s$</annotation>\n </semantics></math>, the corank grows doubly exponentially in <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$s\\rightarrow \\infty$</annotation>\n </semantics></math>; it is 0 precisely when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>8</mn>\n <mo>,</mo>\n <mn>12</mn>\n <mo>,</mo>\n <mn>16</mn>\n <mo>,</mo>\n <mn>24</mn>\n </mrow>\n <annotation>$n= 8,12, 16, 24$</annotation>\n </semantics></math>, and indeed, the cyclotomic unitary groups are generated by torsion elements (in fact by Clifford-cyclotomic gates) for these <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. We give explicit lower bounds for the corank in two different ways. The first is to bound the isotropy subgroups in the action on the tree by explicit cyclotomy. The second is to relate our graphs to Shimura curves over <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <mi>Q</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ζ</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$F_n={\\mathbf {Q}}(\\zeta _n)^+$</annotation>\n </semantics></math> via interchanging local invariants and applying a result of Selberg and Zograf. We show that the cyclotomy arguments give the stronger bounds. In a final section, we execute a program of Sarnak to show that our results for the <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$n=2^s$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mrow>\n <mn>3</mn>\n <mo>·</mo>\n <msup>\n <mn>2</mn>\n <mi>s</mi>\n </msup>\n </mrow>\n </mrow>\n <annotation>$n={3\\cdot 2^s}$</annotation>\n </semantics></math> families are sufficient to give a second proof of Sarnak's conjecture.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sarnak's conjecture in quantum computing, cyclotomic unitary group coranks, and Shimura curves\",\"authors\":\"Colin Ingalls, Bruce W. Jordan, Allan Keeton, Adam Logan, Yevgeny Zaytman\",\"doi\":\"10.1112/jlms.12952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sarnak's conjecture in quantum computing concerns when the groups <span></span><math>\\n <semantics>\\n <msub>\\n <mo>PU</mo>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\operatorname{PU}_{2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mo>PSU</mo>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\operatorname{PSU}_{2}$</annotation>\\n </semantics></math> over cyclotomic rings <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Z</mi>\\n <mo>[</mo>\\n <msub>\\n <mi>ζ</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>${\\\\mathbb {Z}}[\\\\zeta _{n}, 1/2]$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ζ</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>π</mi>\\n <mi>i</mi>\\n <mo>/</mo>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\zeta _n=e^{2\\\\pi i/n}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4</mn>\\n <mo>|</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$4|n$</annotation>\\n </semantics></math>, are generated by the Clifford-cyclotomic gate set. We previously settled this using Euler–Poincaré characteristics. A generalization of Sarnak's conjecture is to ask when these groups are generated by torsion elements. An obstruction to this is provided by the corank: a group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> has <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>corank</mo>\\n <mi>G</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\operatorname{corank}G&gt;0$</annotation>\\n </semantics></math> only if <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is not generated by torsion elements. In this paper, we study the corank of these cyclotomic unitary groups in the families <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$n=2^s$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mrow>\\n <mn>3</mn>\\n <mo>·</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation>$n={3\\\\cdot 2^s}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 8$</annotation>\\n </semantics></math>, by letting them act on Bruhat–Tits trees. The quotients by this action are finite graphs whose first Betti number is the corank of the group. Our main result is that for the families <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$n=2^s$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n <mo>·</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$n=3\\\\cdot 2^s$</annotation>\\n </semantics></math>, the corank grows doubly exponentially in <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>$s$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$s\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>; it is 0 precisely when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>8</mn>\\n <mo>,</mo>\\n <mn>12</mn>\\n <mo>,</mo>\\n <mn>16</mn>\\n <mo>,</mo>\\n <mn>24</mn>\\n </mrow>\\n <annotation>$n= 8,12, 16, 24$</annotation>\\n </semantics></math>, and indeed, the cyclotomic unitary groups are generated by torsion elements (in fact by Clifford-cyclotomic gates) for these <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>. We give explicit lower bounds for the corank in two different ways. The first is to bound the isotropy subgroups in the action on the tree by explicit cyclotomy. The second is to relate our graphs to Shimura curves over <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>Q</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ζ</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation>$F_n={\\\\mathbf {Q}}(\\\\zeta _n)^+$</annotation>\\n </semantics></math> via interchanging local invariants and applying a result of Selberg and Zograf. We show that the cyclotomy arguments give the stronger bounds. In a final section, we execute a program of Sarnak to show that our results for the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$n=2^s$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mrow>\\n <mn>3</mn>\\n <mo>·</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation>$n={3\\\\cdot 2^s}$</annotation>\\n </semantics></math> families are sufficient to give a second proof of Sarnak's conjecture.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12952\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12952","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
量子计算中的萨纳克猜想涉及到当组 PU 2 $\operatorname{PU}_{2}$ 和 PSU 2 $\operatorname{PSU}_{2}$ 笼罩在环 Z [ ζ n , 1 / 2 ] 上时。 ${mathbb {Z}}[\zeta _{n}, 1/2]$ with ζ n = e 2 π i / n $\zeta _n=e^{2\pi i/n}$ , 4 | n $4|n$ , 是由克利福德-环原子门集生成的。我们之前利用欧拉-庞加莱特性解决了这个问题。萨纳克猜想的一个推广问题是这些群何时由扭转元素生成。corank 对此提供了一个障碍:只有当 G $G$ 不是由扭转元素生成时,群 G $G$ 才有 corank G > 0 $operatorname{corank}G&gt;0$。在本文中,我们通过让这些单元群作用于布鲁哈特-提茨树(Bruhat-Tits tree),研究了这些单元群在 n = 2 s $n=2^s$ 和 n = 3 - 2 s $n={3\cdot 2^s}$ ,n ⩾ 8 $n\geqslant 8$ 族中的角群。这种作用的商是有限图,其第一个贝蒂数是群的角。我们的主要结果是,对于 n = 2 s $n=2^s$ 和 n = 3 - 2 s $n=3\cdot 2^s$ 这两个族,当 s →∞ $s\rightarrow \infty$时,corank 在 s $s$ 中以双倍指数增长;而当 n = 8 , 12 , 16 , 24 $n= 8 , 12 , 16 , 24$ 时,corank 恰好为 0。我们用两种不同的方法给出了 corank 的明确下限。第一种方法是通过显式环切来约束树作用中的各向同性子群。第二种是将我们的图与 F n = Q ( ζ n ) 上的志村曲线联系起来。 + $F_n=\{mathbf {Q}}(\zeta _n)^+$ 通过交换局部不变式并应用塞尔伯格和佐格拉夫的一个结果。我们证明循环论证给出了更强的边界。
Sarnak's conjecture in quantum computing, cyclotomic unitary group coranks, and Shimura curves
Sarnak's conjecture in quantum computing concerns when the groups and over cyclotomic rings with , , are generated by the Clifford-cyclotomic gate set. We previously settled this using Euler–Poincaré characteristics. A generalization of Sarnak's conjecture is to ask when these groups are generated by torsion elements. An obstruction to this is provided by the corank: a group has only if is not generated by torsion elements. In this paper, we study the corank of these cyclotomic unitary groups in the families and , , by letting them act on Bruhat–Tits trees. The quotients by this action are finite graphs whose first Betti number is the corank of the group. Our main result is that for the families and , the corank grows doubly exponentially in as ; it is 0 precisely when , and indeed, the cyclotomic unitary groups are generated by torsion elements (in fact by Clifford-cyclotomic gates) for these . We give explicit lower bounds for the corank in two different ways. The first is to bound the isotropy subgroups in the action on the tree by explicit cyclotomy. The second is to relate our graphs to Shimura curves over via interchanging local invariants and applying a result of Selberg and Zograf. We show that the cyclotomy arguments give the stronger bounds. In a final section, we execute a program of Sarnak to show that our results for the and families are sufficient to give a second proof of Sarnak's conjecture.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.