Yanlin Zhu, Shulei Li, Yang Zhang, Jinjing Meng, Xu Tan, Jingdong Chen, Mingcheng Panmai, Jin Xiang
{"title":"激光诱导金属绝缘体转变对单个米氏粒子定向散射的动态控制","authors":"Yanlin Zhu, Shulei Li, Yang Zhang, Jinjing Meng, Xu Tan, Jingdong Chen, Mingcheng Panmai, Jin Xiang","doi":"10.1515/nanoph-2024-0154","DOIUrl":null,"url":null,"abstract":"Interference between the electric and magnetic dipole-induced in Mie nanostructures has been widely demonstrated to tailor the scattering field, which was commonly used in optical nano-antennas, filters, and routers. The dynamic control of scattering fields based on dielectric nanostructures is interesting for fundamental research and important for practical applications. Here, it is shown theoretically that the amplitude of the electric and magnetic dipoles induced in a vanadium dioxide nanosphere can be manipulated by using laser-induced metal-insulator transitions, and it is experimentally demonstrated that the directional scattering can be controlled by simply varying the irradiances of the excitation laser. As a straightforward application, we demonstrate a high-performance optical modulator in the visible band with high modulation depth, fast modulation speed, and high reproducibility arising from a backscattering setup with the quasi-first Kerker condition. Our method indicates the potential applications in developing nanoscale optical antennas and optical modulation devices.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"92 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic control of the directional scattering of single Mie particle by laser induced metal insulator transitions\",\"authors\":\"Yanlin Zhu, Shulei Li, Yang Zhang, Jinjing Meng, Xu Tan, Jingdong Chen, Mingcheng Panmai, Jin Xiang\",\"doi\":\"10.1515/nanoph-2024-0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interference between the electric and magnetic dipole-induced in Mie nanostructures has been widely demonstrated to tailor the scattering field, which was commonly used in optical nano-antennas, filters, and routers. The dynamic control of scattering fields based on dielectric nanostructures is interesting for fundamental research and important for practical applications. Here, it is shown theoretically that the amplitude of the electric and magnetic dipoles induced in a vanadium dioxide nanosphere can be manipulated by using laser-induced metal-insulator transitions, and it is experimentally demonstrated that the directional scattering can be controlled by simply varying the irradiances of the excitation laser. As a straightforward application, we demonstrate a high-performance optical modulator in the visible band with high modulation depth, fast modulation speed, and high reproducibility arising from a backscattering setup with the quasi-first Kerker condition. Our method indicates the potential applications in developing nanoscale optical antennas and optical modulation devices.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0154\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0154","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic control of the directional scattering of single Mie particle by laser induced metal insulator transitions
Interference between the electric and magnetic dipole-induced in Mie nanostructures has been widely demonstrated to tailor the scattering field, which was commonly used in optical nano-antennas, filters, and routers. The dynamic control of scattering fields based on dielectric nanostructures is interesting for fundamental research and important for practical applications. Here, it is shown theoretically that the amplitude of the electric and magnetic dipoles induced in a vanadium dioxide nanosphere can be manipulated by using laser-induced metal-insulator transitions, and it is experimentally demonstrated that the directional scattering can be controlled by simply varying the irradiances of the excitation laser. As a straightforward application, we demonstrate a high-performance optical modulator in the visible band with high modulation depth, fast modulation speed, and high reproducibility arising from a backscattering setup with the quasi-first Kerker condition. Our method indicates the potential applications in developing nanoscale optical antennas and optical modulation devices.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.