了解你的极限:美国湖泊养分限制和养分-叶绿素关系的模式和驱动因素

IF 5.1 2区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Letters Pub Date : 2024-07-01 DOI:10.1002/lol2.10420
Ian M. McCullough, Xinyu Sun, Patrick J. Hanly, Patricia A. Soranno
{"title":"了解你的极限:美国湖泊养分限制和养分-叶绿素关系的模式和驱动因素","authors":"Ian M. McCullough, Xinyu Sun, Patrick J. Hanly, Patricia A. Soranno","doi":"10.1002/lol2.10420","DOIUrl":null,"url":null,"abstract":"Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad‐scale studies of the characteristics of phosphorus (P)‐, nitrogen (N)‐, and co‐limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophyll <jats:italic>a</jats:italic> (Chl <jats:italic>a</jats:italic>) samples, we showed that US lakes are predominantly co‐limited (43%) or P‐limited (41%). Majorities of lakes were P‐limited in the Northeast, Upper Midwest, and Southeast, and co‐limitation was most prevalent in the interior and western United States. N‐limitation (16%) was more prevalent than P‐limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chl <jats:italic>a</jats:italic> concentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowing your limits: Patterns and drivers of nutrient limitation and nutrient–chlorophyll relationships in US lakes\",\"authors\":\"Ian M. McCullough, Xinyu Sun, Patrick J. Hanly, Patricia A. Soranno\",\"doi\":\"10.1002/lol2.10420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad‐scale studies of the characteristics of phosphorus (P)‐, nitrogen (N)‐, and co‐limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophyll <jats:italic>a</jats:italic> (Chl <jats:italic>a</jats:italic>) samples, we showed that US lakes are predominantly co‐limited (43%) or P‐limited (41%). Majorities of lakes were P‐limited in the Northeast, Upper Midwest, and Southeast, and co‐limitation was most prevalent in the interior and western United States. N‐limitation (16%) was more prevalent than P‐limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chl <jats:italic>a</jats:italic> concentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships.\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/lol2.10420\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/lol2.10420","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管了解湖泊初级生产力的养分限制是湖泊学中最古老的研究重点之一,但对磷(P)-、氮(N)-和共限制湖泊的特征及其环境背景的大范围研究却很少。通过分析美国 3342 个同时采集磷、氮和叶绿素 a(Chl a)样本的湖泊,我们发现美国的湖泊主要是共限湖(43%)或磷限湖(41%)。东北部、上中西部和东南部的大多数湖泊都存在磷限制,而共同限制在美国内陆和西部最为普遍。在大盆地和中部平原,氮限制(16%)比磷限制更普遍。养分限制与湖泊、流域和区域变量有关,包括 Chl a 浓度、流域土壤和湿硝酸盐沉积。氮和磷的浓度相互作用,影响着养分与叶绿素的关系,这种关系因养分限制而异。我们的研究表明,在营养盐限制和营养盐-叶绿素关系中,考虑磷、氮和环境背景很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowing your limits: Patterns and drivers of nutrient limitation and nutrient–chlorophyll relationships in US lakes
Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad‐scale studies of the characteristics of phosphorus (P)‐, nitrogen (N)‐, and co‐limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophyll a (Chl a) samples, we showed that US lakes are predominantly co‐limited (43%) or P‐limited (41%). Majorities of lakes were P‐limited in the Northeast, Upper Midwest, and Southeast, and co‐limitation was most prevalent in the interior and western United States. N‐limitation (16%) was more prevalent than P‐limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chl a concentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.80%
发文量
63
审稿时长
25 weeks
期刊介绍: Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.
期刊最新文献
Disentangling effects of droughts and heatwaves on alpine periphyton communities: A mesocosm experiment Snow removal cools a small dystrophic lake Unraveling Lake Geneva's hypoxia crisis in the Anthropocene Simple visualization of fish migration history based on high‐resolution otolith δ18O profiles and hydrodynamic models Arctic fishes reveal patterns in radiocarbon age across habitats and with recent climate change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1