{"title":"利用节能方法形成耐磨涂层,为金属切削工具的耐用性提供技术支持","authors":"Yao Ju, Ievgen Konoplianchenko, Mykhailo Dumanchuk, Jiafei Pu, Qi Dong, Zhengchuan Zhang","doi":"10.1007/s00161-024-01312-5","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study was to evaluate the possibility of using mechanical spectroscopy to determine the strength of tool coatings from their lifespan. Mechanical spectroscopy with the determination of the index tan<span>\\(\\delta \\)</span> (internal friction) was used as the research method. Samples were coated with lamellae composed of WC-6wt% Co cemented carbides. The specimens measured 1.0 mm, 3.0 mm, and 40.0 mm, created using a conventional industrial liquid phase sintering procedure. The original powder consisted of cobalt with traces of chromium and vanadium, and submicron WC grains. The tools tested included carbide cutting tools, and the workpieces were steel alloys. Comparative results showed that coated tools had significantly improved tool life and durability. The relationship between the coating and tool life was evident, providing a practical approach for predictive and non-destructive analyses of coatings on tool durability for composite and finely structured materials.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 6","pages":"1515 - 1525"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technological support for the durability of metal-cutting tools by the formation of wear-resistant coatings using energy-efficient methods\",\"authors\":\"Yao Ju, Ievgen Konoplianchenko, Mykhailo Dumanchuk, Jiafei Pu, Qi Dong, Zhengchuan Zhang\",\"doi\":\"10.1007/s00161-024-01312-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this study was to evaluate the possibility of using mechanical spectroscopy to determine the strength of tool coatings from their lifespan. Mechanical spectroscopy with the determination of the index tan<span>\\\\(\\\\delta \\\\)</span> (internal friction) was used as the research method. Samples were coated with lamellae composed of WC-6wt% Co cemented carbides. The specimens measured 1.0 mm, 3.0 mm, and 40.0 mm, created using a conventional industrial liquid phase sintering procedure. The original powder consisted of cobalt with traces of chromium and vanadium, and submicron WC grains. The tools tested included carbide cutting tools, and the workpieces were steel alloys. Comparative results showed that coated tools had significantly improved tool life and durability. The relationship between the coating and tool life was evident, providing a practical approach for predictive and non-destructive analyses of coatings on tool durability for composite and finely structured materials.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"36 6\",\"pages\":\"1515 - 1525\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-024-01312-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01312-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Technological support for the durability of metal-cutting tools by the formation of wear-resistant coatings using energy-efficient methods
The purpose of this study was to evaluate the possibility of using mechanical spectroscopy to determine the strength of tool coatings from their lifespan. Mechanical spectroscopy with the determination of the index tan\(\delta \) (internal friction) was used as the research method. Samples were coated with lamellae composed of WC-6wt% Co cemented carbides. The specimens measured 1.0 mm, 3.0 mm, and 40.0 mm, created using a conventional industrial liquid phase sintering procedure. The original powder consisted of cobalt with traces of chromium and vanadium, and submicron WC grains. The tools tested included carbide cutting tools, and the workpieces were steel alloys. Comparative results showed that coated tools had significantly improved tool life and durability. The relationship between the coating and tool life was evident, providing a practical approach for predictive and non-destructive analyses of coatings on tool durability for composite and finely structured materials.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.