利用分子模拟研究靶向 CDK5-p25 的多肽 p5 对调控神经元外泌的 Munc18-1 (P67) 的影响

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-07-02 DOI:10.1021/acs.biochem.4c00148
Tejaswi Tammareddy, Walid Keyrouz, Ram D Sriram, Harish C Pant, Antonio Cardone, Jeffery B Klauda
{"title":"利用分子模拟研究靶向 CDK5-p25 的多肽 p5 对调控神经元外泌的 Munc18-1 (P67) 的影响","authors":"Tejaswi Tammareddy, Walid Keyrouz, Ram D Sriram, Harish C Pant, Antonio Cardone, Jeffery B Klauda","doi":"10.1021/acs.biochem.4c00148","DOIUrl":null,"url":null,"abstract":"<p><p>Munc18-1 is an SM (sec1/munc-like) family protein involved in vesicle fusion and neuronal exocytosis. Munc18-1 is known to regulate the exocytosis process by binding with closed- and open-state conformations of Syntaxin1, a protein belonging to the SNARE family established to be central to the exocytosis process. Our previous work studied peptide p5 as a promising drug candidate for CDK5-p25 complex, an Alzheimer's disease (AD) pathological target. Experimental <i>in vivo</i> and <i>in vitro</i> studies suggest that Munc18-1 promotes p5 to selectively inhibit the CDK5-p25 complex without affecting the endogenous CDK5 activity, a characteristic of remarkable therapeutic implications. In this paper, we identify several binding modes of p5 with Munc18-1 that could potentially affect the Munc18-1 binding with SNARE proteins and lead to off-target effects on neuronal communication using molecular dynamics simulations. Recent studies indicate that disruption of Munc18-1 function not only disrupts neurotransmitter release but also results in neurodegeneration, exhibiting clinical resemblance to other neurodegenerative conditions such as AD, causing diagnostic and treatment challenges. We characterize such interactions between p5 and Munc18-1, define the corresponding pharmacophores, and provide guidance for the <i>in vitro</i> validation of our findings to improve therapeutic efficacy and safety of p5.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Effect of Peptide p5 Targeting CDK5-p25 Hyperactivity on Munc18-1 (P67) Regulating Neuronal Exocytosis Using Molecular Simulations.\",\"authors\":\"Tejaswi Tammareddy, Walid Keyrouz, Ram D Sriram, Harish C Pant, Antonio Cardone, Jeffery B Klauda\",\"doi\":\"10.1021/acs.biochem.4c00148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Munc18-1 is an SM (sec1/munc-like) family protein involved in vesicle fusion and neuronal exocytosis. Munc18-1 is known to regulate the exocytosis process by binding with closed- and open-state conformations of Syntaxin1, a protein belonging to the SNARE family established to be central to the exocytosis process. Our previous work studied peptide p5 as a promising drug candidate for CDK5-p25 complex, an Alzheimer's disease (AD) pathological target. Experimental <i>in vivo</i> and <i>in vitro</i> studies suggest that Munc18-1 promotes p5 to selectively inhibit the CDK5-p25 complex without affecting the endogenous CDK5 activity, a characteristic of remarkable therapeutic implications. In this paper, we identify several binding modes of p5 with Munc18-1 that could potentially affect the Munc18-1 binding with SNARE proteins and lead to off-target effects on neuronal communication using molecular dynamics simulations. Recent studies indicate that disruption of Munc18-1 function not only disrupts neurotransmitter release but also results in neurodegeneration, exhibiting clinical resemblance to other neurodegenerative conditions such as AD, causing diagnostic and treatment challenges. We characterize such interactions between p5 and Munc18-1, define the corresponding pharmacophores, and provide guidance for the <i>in vitro</i> validation of our findings to improve therapeutic efficacy and safety of p5.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00148\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00148","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Munc18-1是一种SM(sec1/munc-like)家族蛋白,参与囊泡融合和神经元外渗。Munc18-1通过与Syntaxin1的闭合态和开放态构象结合来调节外吞过程。我们之前的研究将多肽 p5 作为 CDK5-p25 复合物(一种阿尔茨海默病(AD)的病理靶标)的候选药物。体内和体外实验研究表明,Munc18-1能促进p5选择性地抑制CDK5-p25复合物,而不影响内源性CDK5的活性,这一特性具有显著的治疗意义。在本文中,我们利用分子动力学模拟确定了 p5 与 Munc18-1 的几种结合模式,这些模式可能会影响 Munc18-1 与 SNARE 蛋白的结合,并导致对神经元通讯的脱靶效应。最近的研究表明,破坏 Munc18-1 的功能不仅会破坏神经递质的释放,还会导致神经变性,在临床上表现出与其他神经变性疾病(如 AD)的相似性,从而给诊断和治疗带来挑战。我们描述了 p5 和 Munc18-1 之间的这种相互作用,定义了相应的药理作用,并为体外验证我们的发现提供指导,以提高 p5 的疗效和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Effect of Peptide p5 Targeting CDK5-p25 Hyperactivity on Munc18-1 (P67) Regulating Neuronal Exocytosis Using Molecular Simulations.

Munc18-1 is an SM (sec1/munc-like) family protein involved in vesicle fusion and neuronal exocytosis. Munc18-1 is known to regulate the exocytosis process by binding with closed- and open-state conformations of Syntaxin1, a protein belonging to the SNARE family established to be central to the exocytosis process. Our previous work studied peptide p5 as a promising drug candidate for CDK5-p25 complex, an Alzheimer's disease (AD) pathological target. Experimental in vivo and in vitro studies suggest that Munc18-1 promotes p5 to selectively inhibit the CDK5-p25 complex without affecting the endogenous CDK5 activity, a characteristic of remarkable therapeutic implications. In this paper, we identify several binding modes of p5 with Munc18-1 that could potentially affect the Munc18-1 binding with SNARE proteins and lead to off-target effects on neuronal communication using molecular dynamics simulations. Recent studies indicate that disruption of Munc18-1 function not only disrupts neurotransmitter release but also results in neurodegeneration, exhibiting clinical resemblance to other neurodegenerative conditions such as AD, causing diagnostic and treatment challenges. We characterize such interactions between p5 and Munc18-1, define the corresponding pharmacophores, and provide guidance for the in vitro validation of our findings to improve therapeutic efficacy and safety of p5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Probing the Electrostatic Effects of H-Ras Tyrosine 32 Mutations on Intrinsic GTP Hydrolysis Using Vibrational Stark Effect Spectroscopy of a Thiocyanate Probe. Implication of Molecular Constraints Facilitating the Functional Evolution of Pseudomonas aeruginosa KPR2 into a Versatile α-Keto-Acid Reductase. Novel Insights into the Catalytic Mechanism of Collagenolysis by Zn(II)-Dependent Matrix Metalloproteinase-1. Regiochemical Analysis of the ProTide Activation Mechanism. Structural Comparison of Substrate Binding Sites in Dehaloperoxidase A and B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1