可延长血液循环的聚合物纳米载体对胶质母细胞瘤的大小依赖性靶向作用

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Bioconjugate Chemistry Pub Date : 2024-08-21 Epub Date: 2024-07-03 DOI:10.1021/acs.bioconjchem.4c00235
Yukine Ishibashi, Mitsuru Naito, Yusuke Watanuki, Mao Hori, Satomi Ogura, Kaori Taniwaki, Masaru Cho, Ryosuke Komiya, Yuki Mochida, Kanjiro Miyata
{"title":"可延长血液循环的聚合物纳米载体对胶质母细胞瘤的大小依赖性靶向作用","authors":"Yukine Ishibashi, Mitsuru Naito, Yusuke Watanuki, Mao Hori, Satomi Ogura, Kaori Taniwaki, Masaru Cho, Ryosuke Komiya, Yuki Mochida, Kanjiro Miyata","doi":"10.1021/acs.bioconjchem.4c00235","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, there is no effective treatment for glioblastoma multiforme (GBM), the most frequent and malignant type of brain tumor. The blood-brain (tumor) barrier (BB(T)B), which is composed of tightly connected endothelial cells and pericytes (with partial vasculature collapse), hampers nanomedicine accumulation in tumor tissues. We aimed to explore the effect of nanomedicine size on passive targeting of GBM. A series of size-tunable poly(ethylene glycol) (PEG)-grafted copolymers (gPEGs) were constructed with hydrodynamic diameters of 8-30 nm. Biodistribution studies using orthotopic brain tumor-bearing mice revealed that gPEG brain tumor accumulation was maximized at 10 nm with ∼14 dose %/g of tumor, which was 19 times higher than that in the normal brain region and 4.2 times higher than that of 30-nm gPEG. Notably, 10-nm gPEG exhibited substantially higher brain tumor accumulation than 11-nm linear PEG owing to the prolonged blood circulation property of gPEGs, which is derived from a densely PEG-packed structure. 10 nm gPEG exhibited deeper penetration into the brain tumor tissue than the larger gPEGs did (>10 nm). This study demonstrates, for the first time, the great potential of a nanomedicine downsizing strategy for passive GBM targeting.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1154-1159"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size-Dependent Glioblastoma Targeting by Polymeric Nanoruler with Prolonged Blood Circulation.\",\"authors\":\"Yukine Ishibashi, Mitsuru Naito, Yusuke Watanuki, Mao Hori, Satomi Ogura, Kaori Taniwaki, Masaru Cho, Ryosuke Komiya, Yuki Mochida, Kanjiro Miyata\",\"doi\":\"10.1021/acs.bioconjchem.4c00235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, there is no effective treatment for glioblastoma multiforme (GBM), the most frequent and malignant type of brain tumor. The blood-brain (tumor) barrier (BB(T)B), which is composed of tightly connected endothelial cells and pericytes (with partial vasculature collapse), hampers nanomedicine accumulation in tumor tissues. We aimed to explore the effect of nanomedicine size on passive targeting of GBM. A series of size-tunable poly(ethylene glycol) (PEG)-grafted copolymers (gPEGs) were constructed with hydrodynamic diameters of 8-30 nm. Biodistribution studies using orthotopic brain tumor-bearing mice revealed that gPEG brain tumor accumulation was maximized at 10 nm with ∼14 dose %/g of tumor, which was 19 times higher than that in the normal brain region and 4.2 times higher than that of 30-nm gPEG. Notably, 10-nm gPEG exhibited substantially higher brain tumor accumulation than 11-nm linear PEG owing to the prolonged blood circulation property of gPEGs, which is derived from a densely PEG-packed structure. 10 nm gPEG exhibited deeper penetration into the brain tumor tissue than the larger gPEGs did (>10 nm). This study demonstrates, for the first time, the great potential of a nanomedicine downsizing strategy for passive GBM targeting.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"1154-1159\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.4c00235\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00235","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤(GBM)是最常见的恶性脑肿瘤,目前尚无有效的治疗方法。血脑(肿瘤)屏障(BB(T)B)由紧密连接的内皮细胞和周细胞(部分血管塌陷)组成,阻碍了纳米药物在肿瘤组织中的积聚。我们的目的是探索纳米药物的大小对被动靶向 GBM 的影响。我们构建了一系列尺寸可调的聚乙二醇(PEG)接枝共聚物(gPEGs),其水动力直径为 8-30 纳米。利用正位脑肿瘤小鼠进行的生物分布研究表明,10 nm 的 gPEG 脑肿瘤蓄积量最大,为 14 剂量%/g,是正常脑区的 19 倍,是 30 nm gPEG 的 4.2 倍。值得注意的是,10 nm gPEG 的脑肿瘤蓄积量大大高于 11 nm 线性 PEG,这是因为 gPEG 具有延长血液循环的特性,这种特性来自于密集的 PEG 包裹结构。与较大的 gPEG(>10 nm)相比,10 nm gPEG 对脑肿瘤组织的穿透更深。这项研究首次证明了纳米药物小型化策略在被动靶向 GBM 方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Size-Dependent Glioblastoma Targeting by Polymeric Nanoruler with Prolonged Blood Circulation.

Currently, there is no effective treatment for glioblastoma multiforme (GBM), the most frequent and malignant type of brain tumor. The blood-brain (tumor) barrier (BB(T)B), which is composed of tightly connected endothelial cells and pericytes (with partial vasculature collapse), hampers nanomedicine accumulation in tumor tissues. We aimed to explore the effect of nanomedicine size on passive targeting of GBM. A series of size-tunable poly(ethylene glycol) (PEG)-grafted copolymers (gPEGs) were constructed with hydrodynamic diameters of 8-30 nm. Biodistribution studies using orthotopic brain tumor-bearing mice revealed that gPEG brain tumor accumulation was maximized at 10 nm with ∼14 dose %/g of tumor, which was 19 times higher than that in the normal brain region and 4.2 times higher than that of 30-nm gPEG. Notably, 10-nm gPEG exhibited substantially higher brain tumor accumulation than 11-nm linear PEG owing to the prolonged blood circulation property of gPEGs, which is derived from a densely PEG-packed structure. 10 nm gPEG exhibited deeper penetration into the brain tumor tissue than the larger gPEGs did (>10 nm). This study demonstrates, for the first time, the great potential of a nanomedicine downsizing strategy for passive GBM targeting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
期刊最新文献
Pathologic Tissue Injury and Inflammation in Mice Immunized with Plasmid DNA-Encapsulated DOTAP-Based Lipid Nanoparticles. Gallic Acid-Encapsulated PAMAM Dendrimers as an Antioxidant Delivery System for Controlled Release and Reduced Cytotoxicity against ARPE-19 Cells. Renally Excretable Molybdenum Disulfide Nanoparticles as Contrast Agents for Dual-Energy Mammography and Computed Tomography. Site-Specific Immobilization Boosts the Performance of a Galectin-1 Biosensor. Three Is a Magic Number: Tailored Clickable Chelators Used to Determine Optimal RGD-Peptide Multiplicity in αvβ6-Integrin Targeted 177Lu-Labeled Cancer Theranostics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1