Yu Yan, Wenyi Huang, Xiaoting Lu, Xianxian Chen, Yingyi Shan, Xin Luo, Yu Li, Xuesong Yang, Chun Li
{"title":"纳米氧化锌颗粒会诱导细胞死亡,从而在胚胎发育过程中通过氧化应激导致神经管闭合不全。","authors":"Yu Yan, Wenyi Huang, Xiaoting Lu, Xianxian Chen, Yingyi Shan, Xin Luo, Yu Li, Xuesong Yang, Chun Li","doi":"10.1007/s10565-024-09894-1","DOIUrl":null,"url":null,"abstract":"<p><p>The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn<sup>2+</sup> they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn<sup>2+</sup> played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"51"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222284/pdf/","citationCount":"0","resultStr":"{\"title\":\"Zinc oxide nanoparticles induces cell death and consequently leading to incomplete neural tube closure through oxidative stress during embryogenesis.\",\"authors\":\"Yu Yan, Wenyi Huang, Xiaoting Lu, Xianxian Chen, Yingyi Shan, Xin Luo, Yu Li, Xuesong Yang, Chun Li\",\"doi\":\"10.1007/s10565-024-09894-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn<sup>2+</sup> they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn<sup>2+</sup> played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"40 1\",\"pages\":\"51\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09894-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09894-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Zinc oxide nanoparticles induces cell death and consequently leading to incomplete neural tube closure through oxidative stress during embryogenesis.
The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn2+ they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn2+ played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.