{"title":"全蛋白质组关联研究预测,LSM6、GMPPB、ICA1L 和 CISD2 的蛋白质丰度与注意力缺陷/多动障碍有关。","authors":"Jiewei Liu","doi":"10.1007/s00787-024-02517-4","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of changes in protein abundance for attention-deficit/hyperactivity disorder (ADHD) is important for potential disease mechanisms and therapeutic study for ADHD. In order to identify candidate proteins that confer risk for ADHD, a proteome-wide association study (PWAS) for ADHD was conducted by integrating two human brain proteome datasets and the ADHD genome-wide association study (GWAS) summary statistics released by the Psychiatric Genomics Consortium (PGC). A total of 11 risk proteins were identified as significant candidates that passed the bonferroni corrected proteome-wide significant (PWS) level. The predicted protein abundance level of LSM6, GMPPB, ICA1L and CISD2 are shown significantly associated with ADHD in both proteome datasets, highlighting their potential role in ADHD pathogenesis. A transcriptome-wide association study (TWAS) of ADHD was also conducted, and 13 genes with predicted expression changes related to ADHD were identified. GMPPB, ICA1L and NAT6 were supported by both TWAS and PWASs analysis. This study uncovers the predicted protein abundance changes that confer risk for ADHD and pinpoints a number of high-confidence protein candidates (e.g. LSM6, GMPPB, ICA1L, CISD2) for further functional exploration studies and drug development targeting these proteins.</p>","PeriodicalId":11856,"journal":{"name":"European Child & Adolescent Psychiatry","volume":" ","pages":"721-728"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteome-wide association studies have predicted that the protein abundance of LSM6, GMPPB, ICA1L, and CISD2 is associated with attention-deficit/hyperactivity disorder.\",\"authors\":\"Jiewei Liu\",\"doi\":\"10.1007/s00787-024-02517-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identification of changes in protein abundance for attention-deficit/hyperactivity disorder (ADHD) is important for potential disease mechanisms and therapeutic study for ADHD. In order to identify candidate proteins that confer risk for ADHD, a proteome-wide association study (PWAS) for ADHD was conducted by integrating two human brain proteome datasets and the ADHD genome-wide association study (GWAS) summary statistics released by the Psychiatric Genomics Consortium (PGC). A total of 11 risk proteins were identified as significant candidates that passed the bonferroni corrected proteome-wide significant (PWS) level. The predicted protein abundance level of LSM6, GMPPB, ICA1L and CISD2 are shown significantly associated with ADHD in both proteome datasets, highlighting their potential role in ADHD pathogenesis. A transcriptome-wide association study (TWAS) of ADHD was also conducted, and 13 genes with predicted expression changes related to ADHD were identified. GMPPB, ICA1L and NAT6 were supported by both TWAS and PWASs analysis. This study uncovers the predicted protein abundance changes that confer risk for ADHD and pinpoints a number of high-confidence protein candidates (e.g. LSM6, GMPPB, ICA1L, CISD2) for further functional exploration studies and drug development targeting these proteins.</p>\",\"PeriodicalId\":11856,\"journal\":{\"name\":\"European Child & Adolescent Psychiatry\",\"volume\":\" \",\"pages\":\"721-728\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Child & Adolescent Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00787-024-02517-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Child & Adolescent Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00787-024-02517-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
Proteome-wide association studies have predicted that the protein abundance of LSM6, GMPPB, ICA1L, and CISD2 is associated with attention-deficit/hyperactivity disorder.
Identification of changes in protein abundance for attention-deficit/hyperactivity disorder (ADHD) is important for potential disease mechanisms and therapeutic study for ADHD. In order to identify candidate proteins that confer risk for ADHD, a proteome-wide association study (PWAS) for ADHD was conducted by integrating two human brain proteome datasets and the ADHD genome-wide association study (GWAS) summary statistics released by the Psychiatric Genomics Consortium (PGC). A total of 11 risk proteins were identified as significant candidates that passed the bonferroni corrected proteome-wide significant (PWS) level. The predicted protein abundance level of LSM6, GMPPB, ICA1L and CISD2 are shown significantly associated with ADHD in both proteome datasets, highlighting their potential role in ADHD pathogenesis. A transcriptome-wide association study (TWAS) of ADHD was also conducted, and 13 genes with predicted expression changes related to ADHD were identified. GMPPB, ICA1L and NAT6 were supported by both TWAS and PWASs analysis. This study uncovers the predicted protein abundance changes that confer risk for ADHD and pinpoints a number of high-confidence protein candidates (e.g. LSM6, GMPPB, ICA1L, CISD2) for further functional exploration studies and drug development targeting these proteins.
期刊介绍:
European Child and Adolescent Psychiatry is Europe''s only peer-reviewed journal entirely devoted to child and adolescent psychiatry. It aims to further a broad understanding of psychopathology in children and adolescents. Empirical research is its foundation, and clinical relevance is its hallmark.
European Child and Adolescent Psychiatry welcomes in particular papers covering neuropsychiatry, cognitive neuroscience, genetics, neuroimaging, pharmacology, and related fields of interest. Contributions are encouraged from all around the world.