机器学习利用非运动特征预测峰值摄氧量和峰值输出功率,以定制心肺运动测试。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-11-01 Epub Date: 2024-07-03 DOI:10.1007/s00421-024-05543-x
Charlotte Wenzel, Thomas Liebig, Adrian Swoboda, Rika Smolareck, Marit L Schlagheck, David Walzik, Andreas Groll, Richie P Goulding, Philipp Zimmer
{"title":"机器学习利用非运动特征预测峰值摄氧量和峰值输出功率,以定制心肺运动测试。","authors":"Charlotte Wenzel, Thomas Liebig, Adrian Swoboda, Rika Smolareck, Marit L Schlagheck, David Walzik, Andreas Groll, Richie P Goulding, Philipp Zimmer","doi":"10.1007/s00421-024-05543-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cardiopulmonary exercise testing (CPET) is considered the gold standard for assessing cardiorespiratory fitness. To ensure consistent performance of each test, it is necessary to adapt the power increase of the test protocol to the physical characteristics of each individual. This study aimed to use machine learning models to determine individualized ramp protocols based on non-exercise features. We hypothesized that machine learning models will predict peak oxygen uptake ( <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub>) and peak power output (PPO) more accurately than conventional multiple linear regression (MLR).</p><p><strong>Methods: </strong>The cross-sectional study was conducted with 274 (♀168, ♂106) participants who performed CPET on a cycle ergometer. Machine learning models and multiple linear regression were used to predict <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub> and PPO using non-exercise features. The accuracy of the models was compared using criteria such as root mean square error (RMSE). Shapley additive explanation (SHAP) was applied to determine the feature importance.</p><p><strong>Results: </strong>The most accurate machine learning model was the random forest (RMSE: 6.52 ml/kg/min [95% CI 5.21-8.17]) for <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub> prediction and the gradient boosting regression (RMSE: 43watts [95% CI 35-52]) for PPO prediction. Compared to the MLR, the machine learning models reduced the RMSE by up to 28% and 22% for prediction of <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub> and PPO, respectively. Furthermore, SHAP ranked body composition data such as skeletal muscle mass and extracellular water as the most impactful features.</p><p><strong>Conclusion: </strong>Machine learning models predict <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub> and PPO more accurately than MLR and can be used to individualize CPET protocols. Features that provide information about the participant's body composition contribute most to the improvement of these predictions.</p><p><strong>Trial registration number: </strong>DRKS00031401 (6 March 2023, retrospectively registered).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning predicts peak oxygen uptake and peak power output for customizing cardiopulmonary exercise testing using non-exercise features.\",\"authors\":\"Charlotte Wenzel, Thomas Liebig, Adrian Swoboda, Rika Smolareck, Marit L Schlagheck, David Walzik, Andreas Groll, Richie P Goulding, Philipp Zimmer\",\"doi\":\"10.1007/s00421-024-05543-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Cardiopulmonary exercise testing (CPET) is considered the gold standard for assessing cardiorespiratory fitness. To ensure consistent performance of each test, it is necessary to adapt the power increase of the test protocol to the physical characteristics of each individual. This study aimed to use machine learning models to determine individualized ramp protocols based on non-exercise features. We hypothesized that machine learning models will predict peak oxygen uptake ( <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub>) and peak power output (PPO) more accurately than conventional multiple linear regression (MLR).</p><p><strong>Methods: </strong>The cross-sectional study was conducted with 274 (♀168, ♂106) participants who performed CPET on a cycle ergometer. Machine learning models and multiple linear regression were used to predict <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub> and PPO using non-exercise features. The accuracy of the models was compared using criteria such as root mean square error (RMSE). Shapley additive explanation (SHAP) was applied to determine the feature importance.</p><p><strong>Results: </strong>The most accurate machine learning model was the random forest (RMSE: 6.52 ml/kg/min [95% CI 5.21-8.17]) for <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub> prediction and the gradient boosting regression (RMSE: 43watts [95% CI 35-52]) for PPO prediction. Compared to the MLR, the machine learning models reduced the RMSE by up to 28% and 22% for prediction of <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub> and PPO, respectively. Furthermore, SHAP ranked body composition data such as skeletal muscle mass and extracellular water as the most impactful features.</p><p><strong>Conclusion: </strong>Machine learning models predict <math><mover><mi>V</mi> <mo>˙</mo></mover> </math> O<sub>2peak</sub> and PPO more accurately than MLR and can be used to individualize CPET protocols. Features that provide information about the participant's body composition contribute most to the improvement of these predictions.</p><p><strong>Trial registration number: </strong>DRKS00031401 (6 March 2023, retrospectively registered).</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00421-024-05543-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-024-05543-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目的:心肺运动测试(CPET)被认为是评估心肺功能的黄金标准。为确保每次测试的一致性,有必要根据每个人的身体特征调整测试方案的功率增加。本研究旨在使用机器学习模型,根据非运动特征确定个性化坡道方案。我们假设,与传统的多元线性回归(MLR)相比,机器学习模型能更准确地预测峰值摄氧量(V ˙ O2peak)和峰值功率输出(PPO):这项横断面研究的对象是 274 名(♀168,♂106)在自行车测力计上进行 CPET 的参与者。采用机器学习模型和多元线性回归,利用非运动特征预测 V ˙ O2peak 和 PPO。使用均方根误差(RMSE)等标准对模型的准确性进行了比较。采用夏普利加法解释(SHAP)来确定特征的重要性:随机森林(RMSE:6.52 毫升/千克/分钟[95% CI 5.21-8.17])是预测 V ˙ O2 峰值最准确的机器学习模型,梯度提升回归(RMSE:43 瓦特[95% CI 35-52])是预测 PPO 最准确的机器学习模型。与 MLR 相比,机器学习模型在预测 V ˙ O2peak 和 PPO 时的 RMSE 分别降低了 28% 和 22%。此外,SHAP 还将骨骼肌质量和细胞外水分等身体成分数据列为最有影响的特征:结论:机器学习模型对 V ˙ O2peak 和 PPO 的预测比 MLR 更准确,可用于 CPET 方案的个体化。提供受试者身体成分信息的特征最有助于提高这些预测结果:试验注册号:DRKS00031401(2023 年 3 月 6 日,回顾性注册)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning predicts peak oxygen uptake and peak power output for customizing cardiopulmonary exercise testing using non-exercise features.

Purpose: Cardiopulmonary exercise testing (CPET) is considered the gold standard for assessing cardiorespiratory fitness. To ensure consistent performance of each test, it is necessary to adapt the power increase of the test protocol to the physical characteristics of each individual. This study aimed to use machine learning models to determine individualized ramp protocols based on non-exercise features. We hypothesized that machine learning models will predict peak oxygen uptake ( V ˙ O2peak) and peak power output (PPO) more accurately than conventional multiple linear regression (MLR).

Methods: The cross-sectional study was conducted with 274 (♀168, ♂106) participants who performed CPET on a cycle ergometer. Machine learning models and multiple linear regression were used to predict V ˙ O2peak and PPO using non-exercise features. The accuracy of the models was compared using criteria such as root mean square error (RMSE). Shapley additive explanation (SHAP) was applied to determine the feature importance.

Results: The most accurate machine learning model was the random forest (RMSE: 6.52 ml/kg/min [95% CI 5.21-8.17]) for V ˙ O2peak prediction and the gradient boosting regression (RMSE: 43watts [95% CI 35-52]) for PPO prediction. Compared to the MLR, the machine learning models reduced the RMSE by up to 28% and 22% for prediction of V ˙ O2peak and PPO, respectively. Furthermore, SHAP ranked body composition data such as skeletal muscle mass and extracellular water as the most impactful features.

Conclusion: Machine learning models predict V ˙ O2peak and PPO more accurately than MLR and can be used to individualize CPET protocols. Features that provide information about the participant's body composition contribute most to the improvement of these predictions.

Trial registration number: DRKS00031401 (6 March 2023, retrospectively registered).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1