在一个中国家庭中,GAS2的一个新变体与常染色体显性非综合征性听力障碍有关。

IF 3.8 3区 医学 Q2 GENETICS & HEREDITY Human Genomics Pub Date : 2024-07-02 DOI:10.1186/s40246-024-00628-2
Luping Zhang, Danya Zheng, Lian Xu, Han Wang, Shuqiang Zhang, Jianhua Shi, Nana Jin
{"title":"在一个中国家庭中,GAS2的一个新变体与常染色体显性非综合征性听力障碍有关。","authors":"Luping Zhang, Danya Zheng, Lian Xu, Han Wang, Shuqiang Zhang, Jianhua Shi, Nana Jin","doi":"10.1186/s40246-024-00628-2","DOIUrl":null,"url":null,"abstract":"<p><p>Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616-2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2-associated progressive hearing loss.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"73"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218307/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel variant in GAS2 is associated with autosomal dominant nonsyndromic hearing impairment in a Chinese family.\",\"authors\":\"Luping Zhang, Danya Zheng, Lian Xu, Han Wang, Shuqiang Zhang, Jianhua Shi, Nana Jin\",\"doi\":\"10.1186/s40246-024-00628-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616-2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2-associated progressive hearing loss.</p>\",\"PeriodicalId\":13183,\"journal\":{\"name\":\"Human Genomics\",\"volume\":\"18 1\",\"pages\":\"73\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218307/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40246-024-00628-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-024-00628-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

基因敲除 GAS2(生长停滞特异性蛋白 2)会导致耳蜗导管支持细胞中微管束的混乱和不稳定,从而导致体内听力损失。然而,GAS2 变体导致听力损失的分子机制仍然未知。通过全外显子组测序,我们在一个大型显性家族中发现了 GAS2 的一个新的杂合剪接变异(c.616-2 A > G),它是与晚发性和进行性非综合征性听力损失(NSHL)分离的唯一候选突变。这种剪接突变导致内含子保留,并产生 C 端截短蛋白(命名为 GAS2mu)。从机理上讲,GAS2mu 通过泛素-蛋白酶体途径的降解作用增强,表达 GAS2mu 的细胞表现出微管束紊乱。此外,GAS2mu 还通过增加 Bcl-xS/Bcl-xL 的比例进一步促进细胞凋亡,而不是像野生型 GAS2 那样通过 p53 依赖性途径,这表明 GAS2mu 是一种加剧细胞凋亡的毒性分子。我们的研究结果表明,GAS2 的这种新型变体会促进自身蛋白降解、微管紊乱和细胞凋亡,从而导致携带者听力损失。这项研究扩大了GAS2变体的范围,阐明了其潜在的致病机制,为今后研究新的治疗策略以预防GAS2相关的渐进性听力损失奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel variant in GAS2 is associated with autosomal dominant nonsyndromic hearing impairment in a Chinese family.

Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616-2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2-associated progressive hearing loss.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Genomics
Human Genomics GENETICS & HEREDITY-
CiteScore
6.00
自引率
2.20%
发文量
55
审稿时长
11 weeks
期刊介绍: Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics. Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.
期刊最新文献
Advancing understanding of human variability through toxicokinetic modeling, in vitro-in vivo extrapolation, and new approach methodologies. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Analysis of public perceptions on the use of artificial intelligence in genomic medicine. Global transcriptome modulation by xenobiotics: the role of alternative splicing in adaptive responses to chemical exposures. Ralationship between polymorphisms and diplotypes of HLA-G 3'UTR and fetuses with abnormal chromosomes or unexplained pregnancy loss (UPL).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1