量化多糖降解原核生物群落的功能冗余。

IF 13.8 1区 生物学 Q1 MICROBIOLOGY Microbiome Pub Date : 2024-07-02 DOI:10.1186/s40168-024-01838-5
Dan-Dan Li, Jianing Wang, Yiru Jiang, Peng Zhang, Ya Liu, Yue-Zhong Li, Zheng Zhang
{"title":"量化多糖降解原核生物群落的功能冗余。","authors":"Dan-Dan Li, Jianing Wang, Yiru Jiang, Peng Zhang, Ya Liu, Yue-Zhong Li, Zheng Zhang","doi":"10.1186/s40168-024-01838-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes.</p><p><strong>Results: </strong>Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors.</p><p><strong>Conclusions: </strong>We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218364/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying functional redundancy in polysaccharide-degrading prokaryotic communities.\",\"authors\":\"Dan-Dan Li, Jianing Wang, Yiru Jiang, Peng Zhang, Ya Liu, Yue-Zhong Li, Zheng Zhang\",\"doi\":\"10.1186/s40168-024-01838-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes.</p><p><strong>Results: </strong>Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors.</p><p><strong>Conclusions: </strong>We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218364/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01838-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01838-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:功能冗余(FR)广泛存在,但其形成过程和影响因素尚未达成共识。在一个群落中,具有相同功能基因的微生物在分类学上各不相同,这就是群落内功能冗余;而在不同群落中,具有相同功能作用的微生物组合各不相同,这就是群落间功能冗余。我们提出了两个公式来分别量化群落内和群落间的功能冗余程度,并利用原核生物编码的糖苷水解酶(GHs)的遗传信息分析了全球环境样本中碳水化合物降解功能的功能冗余程度:结果:我们的研究结果表明,在一个群落中,每种糖苷水解酶都由多种分类学上不同的原核生物编码,而且几乎所有群落对之间编码酶的原核生物都有进一步的区别。群落内和群落间的 FR 度分别主要受 alpha 和 beta 群落多样性的影响,同时也受环境因素(如 pH 值、温度和盐度)的影响。原核生物群落的功能冗余度由确定性因素决定:我们得出结论:GHs 的功能冗余是群落的稳定特征。本研究有助于确定FR的形成过程和影响因素,并为原核生物群落生物多样性与生态系统功能之间的关系提供了新的见解。视频摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying functional redundancy in polysaccharide-degrading prokaryotic communities.

Background: Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes.

Results: Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors.

Conclusions: We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
期刊最新文献
Microbial colonisation rewires the composition and content of poplar root exudates, root and shoot metabolomes Succession of rumen microbiota and metabolites across different reproductive periods in different sheep breeds and their impact on the growth and development of offspring lambs Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space Station Microbial mechanisms for higher hydrogen production in anaerobic digestion at constant temperature versus gradient heating Enrichment of novel entomopathogenic Pseudomonas species enhances willow resistance to leaf beetles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1