Derya Burcu Hazer Rosberg, Lena Stenberg, Margit Mahlapuu, Lars B Dahlin
{"title":"PXL01 可改变巨噬细胞的反应,但对大鼠神经修复后的轴突生长或许旺细胞反应没有影响。","authors":"Derya Burcu Hazer Rosberg, Lena Stenberg, Margit Mahlapuu, Lars B Dahlin","doi":"10.1080/17460751.2024.2361515","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Adjunctive pharmacological treatment may improve nerve regeneration. We investigated nerve regeneration processes of PXL01 - a lactoferrin-derived peptide - after repair of the sciatic nerve in healthy Wistar rats.<b>Materials & methods:</b> PXL01, sodium hyaluronate (carrier) or sodium chloride was administered around the repair. After 6 days axonal outgrowth, Schwann cell response, pan- (CD68) and pro-healing (CD206) macrophages in sciatic nerve, sensory neuronal response in dorsal root ganglia (DRG) and expression of heat shock protein 27 (HSP27) in sciatic nerves and DRGs were analyzed.<b>Results:</b> Despite a lower number of pan-macrophages, other investigated variables in sciatic nerves or DRGs did not differ between the treatment groups.<b>Conclusion:</b> PLX01 applied locally inhibits inflammation through pan-macrophages in repaired sciatic nerves without any impact on nerve regeneration or pro-healing macrophages.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346556/pdf/","citationCount":"0","resultStr":"{\"title\":\"PXL01 alters macrophage response with no effect on axonal outgrowth or Schwann cell response after nerve repair in rats.\",\"authors\":\"Derya Burcu Hazer Rosberg, Lena Stenberg, Margit Mahlapuu, Lars B Dahlin\",\"doi\":\"10.1080/17460751.2024.2361515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Adjunctive pharmacological treatment may improve nerve regeneration. We investigated nerve regeneration processes of PXL01 - a lactoferrin-derived peptide - after repair of the sciatic nerve in healthy Wistar rats.<b>Materials & methods:</b> PXL01, sodium hyaluronate (carrier) or sodium chloride was administered around the repair. After 6 days axonal outgrowth, Schwann cell response, pan- (CD68) and pro-healing (CD206) macrophages in sciatic nerve, sensory neuronal response in dorsal root ganglia (DRG) and expression of heat shock protein 27 (HSP27) in sciatic nerves and DRGs were analyzed.<b>Results:</b> Despite a lower number of pan-macrophages, other investigated variables in sciatic nerves or DRGs did not differ between the treatment groups.<b>Conclusion:</b> PLX01 applied locally inhibits inflammation through pan-macrophages in repaired sciatic nerves without any impact on nerve regeneration or pro-healing macrophages.</p>\",\"PeriodicalId\":21043,\"journal\":{\"name\":\"Regenerative medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17460751.2024.2361515\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17460751.2024.2361515","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
PXL01 alters macrophage response with no effect on axonal outgrowth or Schwann cell response after nerve repair in rats.
Background: Adjunctive pharmacological treatment may improve nerve regeneration. We investigated nerve regeneration processes of PXL01 - a lactoferrin-derived peptide - after repair of the sciatic nerve in healthy Wistar rats.Materials & methods: PXL01, sodium hyaluronate (carrier) or sodium chloride was administered around the repair. After 6 days axonal outgrowth, Schwann cell response, pan- (CD68) and pro-healing (CD206) macrophages in sciatic nerve, sensory neuronal response in dorsal root ganglia (DRG) and expression of heat shock protein 27 (HSP27) in sciatic nerves and DRGs were analyzed.Results: Despite a lower number of pan-macrophages, other investigated variables in sciatic nerves or DRGs did not differ between the treatment groups.Conclusion: PLX01 applied locally inhibits inflammation through pan-macrophages in repaired sciatic nerves without any impact on nerve regeneration or pro-healing macrophages.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.