Runjie Bill Shi, Moshe Eizenman, Leo Yan Li-Han, Willy Wong
{"title":"多伦多:以试验为导向的多维心理测试算法。","authors":"Runjie Bill Shi, Moshe Eizenman, Leo Yan Li-Han, Willy Wong","doi":"10.1167/jov.24.7.2","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian adaptive methods for sensory threshold determination were conceived originally to track a single threshold. When applied to the testing of vision, they do not exploit the spatial patterns that underlie thresholds at different locations in the visual field. Exploiting these patterns has been recognized as key to further improving visual field test efficiency. We present a new approach (TORONTO) that outperforms other existing methods in terms of speed and accuracy. TORONTO generalizes the QUEST/ZEST algorithm to estimate simultaneously multiple thresholds. After each trial, without waiting for a fully determined threshold, the trial-oriented approach updates not only the location currently tested but also all other locations based on patterns in a reference data set. Since the availability of reference data can be limited, techniques are developed to overcome this limitation. TORONTO was evaluated using computer-simulated visual field tests: In the reliable condition (false positive [FP] = false negative [FN] = 3%), the median termination and root mean square error (RMSE) of TORONTO was 153 trials and 2.0 dB, twice as fast with equal accuracy as ZEST. In the FP = FN = 15% condition, TORONTO terminated in 151 trials and was 2.2 times faster than ZEST with better RMSE (2.6 vs. 3.7 dB). In the FP = FN = 30% condition, TORONTO achieved 4.2 dB RMSE in 148 trials, while all other techniques had > 6.5 dB RMSE and terminated much slower. In conclusion, TORONTO is a fast and accurate algorithm for determining multiple thresholds under a wide range of reliability and subject conditions.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221609/pdf/","citationCount":"0","resultStr":"{\"title\":\"TORONTO: A trial-oriented multidimensional psychometric testing algorithm.\",\"authors\":\"Runjie Bill Shi, Moshe Eizenman, Leo Yan Li-Han, Willy Wong\",\"doi\":\"10.1167/jov.24.7.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bayesian adaptive methods for sensory threshold determination were conceived originally to track a single threshold. When applied to the testing of vision, they do not exploit the spatial patterns that underlie thresholds at different locations in the visual field. Exploiting these patterns has been recognized as key to further improving visual field test efficiency. We present a new approach (TORONTO) that outperforms other existing methods in terms of speed and accuracy. TORONTO generalizes the QUEST/ZEST algorithm to estimate simultaneously multiple thresholds. After each trial, without waiting for a fully determined threshold, the trial-oriented approach updates not only the location currently tested but also all other locations based on patterns in a reference data set. Since the availability of reference data can be limited, techniques are developed to overcome this limitation. TORONTO was evaluated using computer-simulated visual field tests: In the reliable condition (false positive [FP] = false negative [FN] = 3%), the median termination and root mean square error (RMSE) of TORONTO was 153 trials and 2.0 dB, twice as fast with equal accuracy as ZEST. In the FP = FN = 15% condition, TORONTO terminated in 151 trials and was 2.2 times faster than ZEST with better RMSE (2.6 vs. 3.7 dB). In the FP = FN = 30% condition, TORONTO achieved 4.2 dB RMSE in 148 trials, while all other techniques had > 6.5 dB RMSE and terminated much slower. In conclusion, TORONTO is a fast and accurate algorithm for determining multiple thresholds under a wide range of reliability and subject conditions.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221609/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.24.7.2\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.7.2","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
TORONTO: A trial-oriented multidimensional psychometric testing algorithm.
Bayesian adaptive methods for sensory threshold determination were conceived originally to track a single threshold. When applied to the testing of vision, they do not exploit the spatial patterns that underlie thresholds at different locations in the visual field. Exploiting these patterns has been recognized as key to further improving visual field test efficiency. We present a new approach (TORONTO) that outperforms other existing methods in terms of speed and accuracy. TORONTO generalizes the QUEST/ZEST algorithm to estimate simultaneously multiple thresholds. After each trial, without waiting for a fully determined threshold, the trial-oriented approach updates not only the location currently tested but also all other locations based on patterns in a reference data set. Since the availability of reference data can be limited, techniques are developed to overcome this limitation. TORONTO was evaluated using computer-simulated visual field tests: In the reliable condition (false positive [FP] = false negative [FN] = 3%), the median termination and root mean square error (RMSE) of TORONTO was 153 trials and 2.0 dB, twice as fast with equal accuracy as ZEST. In the FP = FN = 15% condition, TORONTO terminated in 151 trials and was 2.2 times faster than ZEST with better RMSE (2.6 vs. 3.7 dB). In the FP = FN = 30% condition, TORONTO achieved 4.2 dB RMSE in 148 trials, while all other techniques had > 6.5 dB RMSE and terminated much slower. In conclusion, TORONTO is a fast and accurate algorithm for determining multiple thresholds under a wide range of reliability and subject conditions.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.