Jianan Lin, Hao Yin, Yanxiong Wu, Jiaxiong Luo, Qianyao Ye, Bin Zhou, Mugui Xie, Cong Ye, Junzhao Liang, Xiaosong Li, Wei Bin, Zhimin Yang
{"title":"基于毛细血管轮廓增强的指甲褶皱全景图像拼接方法。","authors":"Jianan Lin, Hao Yin, Yanxiong Wu, Jiaxiong Luo, Qianyao Ye, Bin Zhou, Mugui Xie, Cong Ye, Junzhao Liang, Xiaosong Li, Wei Bin, Zhimin Yang","doi":"10.1002/jbio.202400105","DOIUrl":null,"url":null,"abstract":"<p>Nail fold capillaroscopy is an important means of monitoring human health. Panoramic nail fold images improve the efficiency and accuracy of examinations. However, the acquisition of panoramic nail fold images is seldom studied and the problem manifests of few matching feature points when image stitching is used for such images. Therefore, this paper presents a method for panoramic nail fold image stitching based on vascular contour enhancement, which first solves the problem of few matching feature points by pre-processing the image with contrast-constrained adaptive histogram equalization (CLAHE), bilateral filtering (BF), and sharpening algorithms. The panoramic images of the nail fold blood vessels are then successfully stitched using the fast robust feature (SURF), fast library of approximate nearest neighbors (FLANN) and random sample agreement (RANSAC) algorithms. The experimental results show that the panoramic image stitched by this paper's algorithm has a field of view width of 7.43 mm, which improves the efficiency and accuracy of diagnosis.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stitching method for panoramic nail fold images based on capillary contour enhancement\",\"authors\":\"Jianan Lin, Hao Yin, Yanxiong Wu, Jiaxiong Luo, Qianyao Ye, Bin Zhou, Mugui Xie, Cong Ye, Junzhao Liang, Xiaosong Li, Wei Bin, Zhimin Yang\",\"doi\":\"10.1002/jbio.202400105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nail fold capillaroscopy is an important means of monitoring human health. Panoramic nail fold images improve the efficiency and accuracy of examinations. However, the acquisition of panoramic nail fold images is seldom studied and the problem manifests of few matching feature points when image stitching is used for such images. Therefore, this paper presents a method for panoramic nail fold image stitching based on vascular contour enhancement, which first solves the problem of few matching feature points by pre-processing the image with contrast-constrained adaptive histogram equalization (CLAHE), bilateral filtering (BF), and sharpening algorithms. The panoramic images of the nail fold blood vessels are then successfully stitched using the fast robust feature (SURF), fast library of approximate nearest neighbors (FLANN) and random sample agreement (RANSAC) algorithms. The experimental results show that the panoramic image stitched by this paper's algorithm has a field of view width of 7.43 mm, which improves the efficiency and accuracy of diagnosis.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400105\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400105","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Stitching method for panoramic nail fold images based on capillary contour enhancement
Nail fold capillaroscopy is an important means of monitoring human health. Panoramic nail fold images improve the efficiency and accuracy of examinations. However, the acquisition of panoramic nail fold images is seldom studied and the problem manifests of few matching feature points when image stitching is used for such images. Therefore, this paper presents a method for panoramic nail fold image stitching based on vascular contour enhancement, which first solves the problem of few matching feature points by pre-processing the image with contrast-constrained adaptive histogram equalization (CLAHE), bilateral filtering (BF), and sharpening algorithms. The panoramic images of the nail fold blood vessels are then successfully stitched using the fast robust feature (SURF), fast library of approximate nearest neighbors (FLANN) and random sample agreement (RANSAC) algorithms. The experimental results show that the panoramic image stitched by this paper's algorithm has a field of view width of 7.43 mm, which improves the efficiency and accuracy of diagnosis.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.