{"title":"队列系统中渐进最优的延迟感知调度","authors":"Saad Kriouile;Mohamad Assaad;Maialen Larranaga","doi":"10.23919/JCN.2021.000039","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a delay-aware channel allocation problem where the number of channels is less than that of users. Due to the proliferation of delay sensitive applications, the objective of our problem is chosen to be the minimization of the total average queuing delay of the network in question. First, we show that our problem falls in the framework of restless bandit problems (RBP), for which obtaining the optimal solution is known to be out of reach. To circumvent this difficulty, we tackle the problem by adopting a Whittle index approach. To that extent, we employ a Lagrangian relaxation for the original problem and prove it to be decomposable into multiple one-dimensional independent subproblems. Afterwards, we provide structural results on the optimal policy of each of the subproblems. More specifically, we prove that a threshold policy is able to achieve the optimal operating point of the considered subproblem. Armed with that, we show the indexability of the subproblems and characterize the Whittle's indices which are the basis of our proposed heuristic. We then provide a rigorous mathematical proof that our policy is optimal in the infinitely many users regime. Finally, we provide numerical results that showcase the remarkable good performance of our proposed policy and that corroborate the theoretical findings.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10551315","citationCount":"0","resultStr":"{\"title\":\"Asymptotically optimal delay-aware scheduling in queueing systems\",\"authors\":\"Saad Kriouile;Mohamad Assaad;Maialen Larranaga\",\"doi\":\"10.23919/JCN.2021.000039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a delay-aware channel allocation problem where the number of channels is less than that of users. Due to the proliferation of delay sensitive applications, the objective of our problem is chosen to be the minimization of the total average queuing delay of the network in question. First, we show that our problem falls in the framework of restless bandit problems (RBP), for which obtaining the optimal solution is known to be out of reach. To circumvent this difficulty, we tackle the problem by adopting a Whittle index approach. To that extent, we employ a Lagrangian relaxation for the original problem and prove it to be decomposable into multiple one-dimensional independent subproblems. Afterwards, we provide structural results on the optimal policy of each of the subproblems. More specifically, we prove that a threshold policy is able to achieve the optimal operating point of the considered subproblem. Armed with that, we show the indexability of the subproblems and characterize the Whittle's indices which are the basis of our proposed heuristic. We then provide a rigorous mathematical proof that our policy is optimal in the infinitely many users regime. Finally, we provide numerical results that showcase the remarkable good performance of our proposed policy and that corroborate the theoretical findings.\",\"PeriodicalId\":54864,\"journal\":{\"name\":\"Journal of Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10551315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10551315/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10551315/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Asymptotically optimal delay-aware scheduling in queueing systems
In this paper, we investigate a delay-aware channel allocation problem where the number of channels is less than that of users. Due to the proliferation of delay sensitive applications, the objective of our problem is chosen to be the minimization of the total average queuing delay of the network in question. First, we show that our problem falls in the framework of restless bandit problems (RBP), for which obtaining the optimal solution is known to be out of reach. To circumvent this difficulty, we tackle the problem by adopting a Whittle index approach. To that extent, we employ a Lagrangian relaxation for the original problem and prove it to be decomposable into multiple one-dimensional independent subproblems. Afterwards, we provide structural results on the optimal policy of each of the subproblems. More specifically, we prove that a threshold policy is able to achieve the optimal operating point of the considered subproblem. Armed with that, we show the indexability of the subproblems and characterize the Whittle's indices which are the basis of our proposed heuristic. We then provide a rigorous mathematical proof that our policy is optimal in the infinitely many users regime. Finally, we provide numerical results that showcase the remarkable good performance of our proposed policy and that corroborate the theoretical findings.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.