构建用于高效光催化固氮的分层 In2O3/In2S3-ZnCdS 三元微球异质结构

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2024-07-03 DOI:10.1039/D4DT01605J
Liangliang Huang, Tao Peng, Rui Wang, Beibei He, Jun Jin, Huanwen Wang and Yansheng Gong
{"title":"构建用于高效光催化固氮的分层 In2O3/In2S3-ZnCdS 三元微球异质结构","authors":"Liangliang Huang, Tao Peng, Rui Wang, Beibei He, Jun Jin, Huanwen Wang and Yansheng Gong","doi":"10.1039/D4DT01605J","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic ammonia production holds immense promise as an environmentally sustainable approach to nitrogen fixation. In this study, In<small><sub>2</sub></small>O<small><sub>3</sub></small>/In<small><sub>2</sub></small>S<small><sub>3</sub></small>-ZnCdS ternary heterostructures were successfully constructed through an innovative in situ anion exchange process, coupled with a low-temperature hydrothermal method for ZnCdS (ZCS) incorporation. The resulting In<small><sub>2</sub></small>O<small><sub>3</sub></small>/In<small><sub>2</sub></small>S<small><sub>3</sub></small>-ZCS photocatalyst was proved to be highly efficient in converting N<small><sub>2</sub></small> to NH<small><sub>3</sub></small> under mild conditions, eliminating the need for sacrificial agents or precious metal catalysts. Notably, the NH<small><sub>4</sub></small><small><sup>+</sup></small> yield of In<small><sub>2</sub></small>O<small><sub>3</sub></small>/In<small><sub>2</sub></small>S<small><sub>3</sub></small>-0.5ZCS reached a significant level of 71.2 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which was 10.47 times higher than that of In<small><sub>2</sub></small>O<small><sub>3</sub></small> (6.8 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and 3.22 times higher than that of In<small><sub>2</sub></small>O<small><sub>3</sub></small>/In<small><sub>2</sub></small>S<small><sub>3</sub></small> (22.1 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). This outstanding performance can be attributed to the ternary heterojunction configuration, which significantly extends the lifetime of photogenerated carriers and enhances the spatial separation of electrons and holes. The synergistic interplay between CdZnS, In<small><sub>2</sub></small>S<small><sub>3</sub></small>, and In<small><sub>2</sub></small>O<small><sub>3</sub></small> in the heterojunction facilitates electron transport, thereby boosting the rate of the photocatalytic nitrogen fixation reaction. Our study not only validates the efficacy of ternary heterojunctions in photocatalytic nitrogen fixation but also offers valuable insights for the design and construction of such catalysts for future applications.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dt/d4dt01605j?page=search","citationCount":"0","resultStr":"{\"title\":\"Construction of hierarchical In2O3/In2S3-ZnCdS ternary microsphere heterostructures for efficient photocatalytic nitrogen fixation†\",\"authors\":\"Liangliang Huang, Tao Peng, Rui Wang, Beibei He, Jun Jin, Huanwen Wang and Yansheng Gong\",\"doi\":\"10.1039/D4DT01605J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalytic ammonia production holds immense promise as an environmentally sustainable approach to nitrogen fixation. In this study, In<small><sub>2</sub></small>O<small><sub>3</sub></small>/In<small><sub>2</sub></small>S<small><sub>3</sub></small>-ZnCdS ternary heterostructures were successfully constructed through an innovative in situ anion exchange process, coupled with a low-temperature hydrothermal method for ZnCdS (ZCS) incorporation. The resulting In<small><sub>2</sub></small>O<small><sub>3</sub></small>/In<small><sub>2</sub></small>S<small><sub>3</sub></small>-ZCS photocatalyst was proved to be highly efficient in converting N<small><sub>2</sub></small> to NH<small><sub>3</sub></small> under mild conditions, eliminating the need for sacrificial agents or precious metal catalysts. Notably, the NH<small><sub>4</sub></small><small><sup>+</sup></small> yield of In<small><sub>2</sub></small>O<small><sub>3</sub></small>/In<small><sub>2</sub></small>S<small><sub>3</sub></small>-0.5ZCS reached a significant level of 71.2 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which was 10.47 times higher than that of In<small><sub>2</sub></small>O<small><sub>3</sub></small> (6.8 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and 3.22 times higher than that of In<small><sub>2</sub></small>O<small><sub>3</sub></small>/In<small><sub>2</sub></small>S<small><sub>3</sub></small> (22.1 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). This outstanding performance can be attributed to the ternary heterojunction configuration, which significantly extends the lifetime of photogenerated carriers and enhances the spatial separation of electrons and holes. The synergistic interplay between CdZnS, In<small><sub>2</sub></small>S<small><sub>3</sub></small>, and In<small><sub>2</sub></small>O<small><sub>3</sub></small> in the heterojunction facilitates electron transport, thereby boosting the rate of the photocatalytic nitrogen fixation reaction. Our study not only validates the efficacy of ternary heterojunctions in photocatalytic nitrogen fixation but also offers valuable insights for the design and construction of such catalysts for future applications.</p>\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dt/d4dt01605j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt01605j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt01605j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

光催化氨生产作为一种环境可持续的固氮方法前景广阔。在本研究中,通过创新的原位阴离子交换工艺,结合低温水热法掺入 ZnCdS(ZCS),成功构建了 In2O3/In2S3-ZnCdS 三元异质结构。结果证明,In2O3/In2S3-ZCS 光催化剂能在温和条件下高效地将 N2 转化为 NH3,无需使用牺牲剂或贵金属催化剂。值得注意的是,In2O3/In2S3-0.5ZCS 的 NH4+ 产率达到了 71.2 μmol-g-1-h-1 的显著水平,是 In2O3(6.8 μmol-g-1-h-1)的 10.47 倍,是 In2O3/In2S3 (22.1 μmol-g-1-h-1)的 3.22 倍。这种出色的性能归功于三元异质结结构,它大大延长了光生载流子的寿命,并增强了电子和空穴的空间分离。异质结中 CdZnS、In₂S₃ 和 In₂O₃ 之间的协同作用促进了电子传输,从而提高了光催化固氮反应的速率。我们的研究不仅验证了三元异质结在光催化固氮反应中的功效,还为设计和构建此类催化剂的未来应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of hierarchical In2O3/In2S3-ZnCdS ternary microsphere heterostructures for efficient photocatalytic nitrogen fixation†

Photocatalytic ammonia production holds immense promise as an environmentally sustainable approach to nitrogen fixation. In this study, In2O3/In2S3-ZnCdS ternary heterostructures were successfully constructed through an innovative in situ anion exchange process, coupled with a low-temperature hydrothermal method for ZnCdS (ZCS) incorporation. The resulting In2O3/In2S3-ZCS photocatalyst was proved to be highly efficient in converting N2 to NH3 under mild conditions, eliminating the need for sacrificial agents or precious metal catalysts. Notably, the NH4+ yield of In2O3/In2S3-0.5ZCS reached a significant level of 71.2 μmol g−1 h−1, which was 10.47 times higher than that of In2O3 (6.8 μmol g−1 h−1) and 3.22 times higher than that of In2O3/In2S3 (22.1 μmol g−1 h−1). This outstanding performance can be attributed to the ternary heterojunction configuration, which significantly extends the lifetime of photogenerated carriers and enhances the spatial separation of electrons and holes. The synergistic interplay between CdZnS, In2S3, and In2O3 in the heterojunction facilitates electron transport, thereby boosting the rate of the photocatalytic nitrogen fixation reaction. Our study not only validates the efficacy of ternary heterojunctions in photocatalytic nitrogen fixation but also offers valuable insights for the design and construction of such catalysts for future applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
Design and synthesis of pillared metal-organic frameworks featuring olefinic fragments Al(III) and Ga(III) triflate complexes as solvate ionic liquids: speciation and application as soluble and recyclable Lewis acidic catalysts Uranium-bridged Dimeric Keggin-type Polyoxometalate and its Proton Conductive Properties Unveiling the Impact of Enhanced Hydrophobicity of ZIF-71 on Butanol Purification: Insights from Experimental and Molecular Simulations Facile one-step synthesis of a WO3/ZnWO4 heterojunction modified using ZnFe LDH enhances the PEC water splitting efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1